
24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know… 1/12

OCTOBER 8, 2003 by JOEL SPOLSKY

The Absolute Minimum Every
Software Developer Absolutely,
Positively Must Know About
Unicode and Character Sets (No
Excuses!)

Ever wonder about that mysterious Content-Type tag? You know, the one you’re
supposed to put in HTML and you never quite know what it should be?

Did you ever get an email from your friends in Bulgaria with the subject line
“???? ?????? ??? ????”?

I’ve been dismayed to discover just how many software
developers aren’t really completely up to speed on the
mysterious world of character sets, encodings, Unicode, all
that stuff. A couple of years ago, a beta tester for FogBUGZ
was wondering whether it could handle incoming email in
Japanese. Japanese? They have email in Japanese? I had
no idea When I looked closely at the commercial ActiveX control we were using

TOP 10, NEW DEVELOPER, NEWS

I’m Joel Spolsky, a software developer in New York City. More
about me.

JOEL ON SOFTWARE

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/author/joelonsoftware/
http://www.fogcreek.com/FogBUGZ
https://www.joelonsoftware.com/category/reading-lists/top-10/
https://www.joelonsoftware.com/category/reading-lists/new-developer/
https://www.joelonsoftware.com/category/news/
https://www.joelonsoftware.com/about-me/
https://www.joelonsoftware.com/about-me/
https://www.joelonsoftware.com/

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know… 2/12

no idea. When I looked closely at the commercial ActiveX control we were using
to parse MIME email messages, we discovered it was doing exactly the wrong
thing with character sets, so we actually had to write heroic code to undo the
wrong conversion it had done and redo it correctly. When I looked into another
commercial library, it, too, had a completely broken character code
implementation. I corresponded with the developer of that package and he sort
of thought they “couldn’t do anything about it.” Like many programmers, he just
wished it would all blow over somehow.

But it won’t. When I discovered that the popular web development tool PHP has
almost complete ignorance of character encoding issues, blithely using 8 bits for
characters, making it darn near impossible to develop good international web
applications, I thought, enough is enough.

So I have an announcement to make: if you are a programmer working in 2003
and you don’t know the basics of characters, character sets, encodings, and
Unicode, and I catch you, I’m going to punish you by making you peel onions for
6 months in a submarine. I swear I will.

And one more thing:

IT’S NOT THAT HARD.

In this article I’ll fill you in on exactly what every working programmer should
know. All that stuff about “plain text = ascii = characters are 8 bits” is not only
wrong, it’s hopelessly wrong, and if you’re still programming that way, you’re
not much better than a medical doctor who doesn’t believe in germs. Please do
not write another line of code until you finish reading this article.

Before I get started, I should warn you that if you are one of those rare people
who knows about internationalization, you are going to find my entire
discussion a little bit oversimplified. I’m really just trying to set a minimum bar
here so that everyone can understand what’s going on and can write code that
has a hope of working with text in any language other than the subset of English
that doesn’t include words with accents. And I should warn you that character
handling is only a tiny portion of what it takes to create software that works
internationally, but I can only write about one thing at a time so today it’s
character sets.

A Historical Perspective

The easiest way to understand this stuff is to go chronologically.

http://www.fogcreek.com/FogBUGZ
http://ca3.php.net/manual/en/language.types.string.php

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know… 3/12

You probably think I’m going to talk about very old character sets like EBCDIC
here. Well, I won’t. EBCDIC is not relevant to your life. We don’t have to go that
far back in time.

Back in the semi-olden days, when Unix
was being invented and K&R were writing
The C Programming Language, everything
was very simple. EBCDIC was on its way
out. The only characters that mattered
were good old unaccented English letters,
and we had a code for them called ASCII which was able to represent every
character using a number between 32 and 127. Space was 32, the letter “A” was
65, etc. This could conveniently be stored in 7 bits. Most computers in those
days were using 8-bit bytes, so not only could you store every possible ASCII
character, but you had a whole bit to spare, which, if you were wicked, you could
use for your own devious purposes: the dim bulbs at WordStar actually turned
on the high bit to indicate the last letter in a word, condemning WordStar to
English text only. Codes below 32 were called unprintable and were used for
cussing. Just kidding. They were used for control characters, like 7 which made
your computer beep and 12 which caused the current page of paper to go flying
out of the printer and a new one to be fed in.

And all was good, assuming you were an English speaker.

Because bytes have room for up to eight
bits, lots of people got to thinking, “gosh,
we can use the codes 128-255 for our own
purposes.” The trouble was, lots of people
had this idea at the same time, and they
had their own ideas of what should go
where in the space from 128 to 255. The
IBM-PC had something that came to be
known as the OEM character set which provided some accented characters for
European languages and a bunch of line drawing characters… horizontal bars,
vertical bars, horizontal bars with little dingle-dangles dangling off the right
side, etc., and you could use these line drawing characters to make spiffy boxes
and lines on the screen, which you can still see running on the 8088 computer at
your dry cleaners’. In fact as soon as people started buying PCs outside of
America all kinds of different OEM character sets were dreamed up, which all

http://cm.bell-labs.com/cm/cs/cbook/
http://www.robelle.com/library/smugbook/ascii.html
http://www.jimprice.com/ascii-dos.gif

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know… 4/12

used the top 128 characters for their own purposes. For example on some PCs
the character code 130 would display as é, but on computers sold in Israel it was
the Hebrew letter Gimel (), so when Americans would send their résumés to
Israel they would arrive as r sum s. In many cases, such as Russian, there were
lots of different ideas of what to do with the upper-128 characters, so you
couldn’t even reliably interchange Russian documents.

Eventually this OEM free-for-all got codified in the ANSI standard. In the ANSI
standard, everybody agreed on what to do below 128, which was pretty much
the same as ASCII, but there were lots of different ways to handle the characters
from 128 and on up, depending on where you lived. These different systems
were called code pages. So for example in Israel DOS used a code page called
862, while Greek users used 737. They were the same below 128 but different
from 128 up, where all the funny letters resided. The national versions of MS-
DOS had dozens of these code pages, handling everything from English to
Icelandic and they even had a few “multilingual” code pages that could do
Esperanto and Galician on the same computer! Wow! But getting, say, Hebrew
and Greek on the same computer was a complete impossibility unless you wrote
your own custom program that displayed everything using bitmapped graphics,
because Hebrew and Greek required different code pages with different
interpretations of the high numbers.

Meanwhile, in Asia, even more crazy things were going on to take into account
the fact that Asian alphabets have thousands of letters, which were never going
to fit into 8 bits. This was usually solved by the messy system called DBCS, the
“double byte character set” in which some letters were stored in one byte and
others took two. It was easy to move forward in a string, but dang near
impossible to move backwards. Programmers were encouraged not to use s++
and s– to move backwards and forwards, but instead to call functions such as
Windows’ AnsiNext and AnsiPrev which knew how to deal with the whole mess.

But still, most people just pretended that a byte was a character and a character
was 8 bits and as long as you never moved a string from one computer to
another, or spoke more than one language, it would sort of always work. But of
course, as soon as the Internet happened, it became quite commonplace to
move strings from one computer to another, and the whole mess came tumbling
down. Luckily, Unicode had been invented.

Unicode

Unicode was a brave effort to create a single character set that included every

http://www.jimprice.com/ascii-dos.gif
http://www.i18nguy.com/unicode/codepages.html#msftdos

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know… 5/12

Unicode was a brave effort to create a single character set that included every
reasonable writing system on the planet and some make-believe ones like
Klingon, too. Some people are under the misconception that Unicode is simply a
16-bit code where each character takes 16 bits and therefore there are 65,536
possible characters. This is not, actually, correct. It is the single most common
myth about Unicode, so if you thought that, don’t feel bad.

In fact, Unicode has a different way of thinking about characters, and you have
to understand the Unicode way of thinking of things or nothing will make sense.

Until now, we’ve assumed that a letter maps to some bits which you can store
on disk or in memory:

A -> 0100 0001

In Unicode, a letter maps to something called a code point which is still just a
theoretical concept. How that code point is represented in memory or on disk is
a whole nuther story.

In Unicode, the letter A is a platonic ideal. It’s just floating in heaven:

A

This platonic A is different than B, and different from a, but the same as A
and A and A. The idea that A in a Times New Roman font is the same character

as the A in a Helvetica font, but different from “a” in lower case, does not seem
very controversial, but in some languages just figuring out what a letter is can
cause controversy. Is the German letter ß a real letter or just a fancy way of
writing ss? If a letter’s shape changes at the end of the word, is that a different
letter? Hebrew says yes, Arabic says no. Anyway, the smart people at the
Unicode consortium have been figuring this out for the last decade or so,
accompanied by a great deal of highly political debate, and you don’t have to
worry about it. They’ve figured it all out already.

Every platonic letter in every alphabet is assigned a magic number by the
Unicode consortium which is written like this: U+0639. This magic number is
called a code point. The U+ means “Unicode” and the numbers are hexadecimal.
U+0639 is the Arabic letter Ain. The English letter A would be U+0041. You can
find them all using the charmap utility on Windows 2000/XP or visiting the
Unicode web site

http://www.unicode.org/

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know… 6/12

Unicode web site.

There is no real limit on the number of letters that Unicode can define and in
fact they have gone beyond 65,536 so not every unicode letter can really be
squeezed into two bytes, but that was a myth anyway.

OK, so say we have a string:

Hello

which, in Unicode, corresponds to these five code points:

U+0048 U+0065 U+006C U+006C U+006F.

Just a bunch of code points. Numbers, really. We haven’t yet said anything
about how to store this in memory or represent it in an email message.

Encodings

That’s where encodings come in.

The earliest idea for Unicode encoding, which led to the myth about the two
bytes, was, hey, let’s just store those numbers in two bytes each. So Hello
becomes

00 48 00 65 00 6C 00 6C 00 6F

Right? Not so fast! Couldn’t it also be:

48 00 65 00 6C 00 6C 00 6F 00 ?

Well, technically, yes, I do believe it could, and, in fact, early implementors
wanted to be able to store their Unicode code points in high-endian or low-
endian mode, whichever their particular CPU was fastest at, and lo, it was
evening and it was morning and there were already two ways to store Unicode.
So the people were forced to come up with the bizarre convention of storing a
FE FF at the beginning of every Unicode string; this is called a Unicode Byte
Order Mark and if you are swapping your high and low bytes it will look like a FF
FE and the person reading your string will know that they have to swap every
other byte. Phew. Not every Unicode string in the wild has a byte order mark at
the beginning.

http://www.unicode.org/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/unicode_42jv.asp

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know… 7/12

For a while it seemed like that might be good enough, but programmers were
complaining. “Look at all those zeros!” they said, since they were Americans and
they were looking at English text which rarely used code points above U+00FF.
Also they were liberal hippies in California who wanted to conserve (sneer). If
they were Texans they wouldn’t have minded guzzling twice the number of
bytes. But those Californian wimps couldn’t bear the idea of doubling the
amount of storage it took for strings, and anyway, there were already all these
doggone documents out there using various ANSI and DBCS character sets and
who’s going to convert them all? Moi? For this reason alone most people decided
to ignore Unicode for several years and in the meantime things got worse.

Thus was invented the brilliant concept of UTF-8. UTF-8 was another system for
storing your string of Unicode code points, those magic U+ numbers, in memory
using 8 bit bytes. In UTF-8, every code point from 0-127 is stored in a single byte.
Only code points 128 and above are stored using 2, 3, in fact, up to 6 bytes.

This has the neat side effect that English text looks exactly the same in UTF-8 as
it did in ASCII, so Americans don’t even notice anything wrong. Only the rest of
the world has to jump through hoops. Specifically, Hello, which was U+0048
U+0065 U+006C U+006C U+006F, will be stored as 48 65 6C 6C 6F, which, behold!
is the same as it was stored in ASCII, and ANSI, and every OEM character set on
the planet. Now, if you are so bold as to use accented letters or Greek letters or
Klingon letters, you’ll have to use several bytes to store a single code point, but
the Americans will never notice. (UTF-8 also has the nice property that ignorant
old string-processing code that wants to use a single 0 byte as the null-
terminator will not truncate strings).

So far I’ve told you three ways of encoding Unicode. The traditional store-it-in-
two-byte methods are called UCS-2 (because it has two bytes) or UTF-16
(because it has 16 bits), and you still have to figure out if it’s high-endian UCS-2
or low-endian UCS-2. And there’s the popular new UTF-8 standard which has the
nice property of also working respectably if you have the happy coincidence of
English text and braindead programs that are completely unaware that there is
anything other than ASCII.

There are actually a bunch of other ways of encoding Unicode There’s

http://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt
http://www.utf-8.com/
http://www.zvon.org/tmRFC/RFC2279/Output/chapter2.html

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know… 8/12

There are actually a bunch of other ways of encoding Unicode. There’s
something called UTF-7, which is a lot like UTF-8 but guarantees that the high
bit will always be zero, so that if you have to pass Unicode through some kind of
draconian police-state email system that thinks 7 bits are quite enough, thank
you it can still squeeze through unscathed. There’s UCS-4, which stores each
code point in 4 bytes, which has the nice property that every single code point
can be stored in the same number of bytes, but, golly, even the Texans wouldn’t
be so bold as to waste that much memory.

And in fact now that you’re thinking of things in terms of platonic ideal letters
which are represented by Unicode code points, those unicode code points can
be encoded in any old-school encoding scheme, too! For example, you could
encode the Unicode string for Hello (U+0048 U+0065 U+006C U+006C U+006F) in
ASCII, or the old OEM Greek Encoding, or the Hebrew ANSI Encoding, or any of
several hundred encodings that have been invented so far, with one catch: some
of the letters might not show up! If there’s no equivalent for the Unicode code
point you’re trying to represent in the encoding you’re trying to represent it in,
you usually get a little question mark: ? or, if you’re really good, a box. Which did
you get? -> �

There are hundreds of traditional encodings which can only store some code
points correctly and change all the other code points into question marks. Some
popular encodings of English text are Windows-1252 (the Windows 9x standard
for Western European languages) and ISO-8859-1, aka Latin-1 (also useful for
any Western European language). But try to store Russian or Hebrew letters in
these encodings and you get a bunch of question marks. UTF 7, 8, 16, and 32 all
have the nice property of being able to store any code point correctly.

The Single Most Important Fact About Encodings

If you completely forget everything I just explained, please remember one
extremely important fact. It does not make sense to have a string without
knowing what encoding it uses. You can no longer stick your head in the sand
and pretend that “plain” text is ASCII.

There Ain’t No Such Thing As Plain Text.

If you have a string, in memory, in a file, or in an email message, you have to
know what encoding it is in or you cannot interpret it or display it to users
correctly.

Almost every stupid “my website looks like gibberish” or “she can’t read my

http://www.htmlhelp.com/reference/charset/

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know… 9/12

Almost every stupid my website looks like gibberish or she can t read my
emails when I use accents” problem comes down to one naive programmer who
didn’t understand the simple fact that if you don’t tell me whether a particular
string is encoded using UTF-8 or ASCII or ISO 8859-1 (Latin 1) or Windows 1252
(Western European), you simply cannot display it correctly or even figure out
where it ends. There are over a hundred encodings and above code point 127,
all bets are off.

How do we preserve this information about what encoding a string uses? Well,
there are standard ways to do this. For an email message, you are expected to
have a string in the header of the form

Content-Type: text/plain; charset="UTF-8"

For a web page, the original idea was that the web server would return a similar
Content-Type http header along with the web page itself — not in the HTML
itself, but as one of the response headers that are sent before the HTML page.

This causes problems. Suppose you have a big web server with lots of sites and
hundreds of pages contributed by lots of people in lots of different languages
and all using whatever encoding their copy of Microsoft FrontPage saw fit to
generate. The web server itself wouldn’t really know what encoding each file
was written in, so it couldn’t send the Content-Type header.

It would be convenient if you could put the Content-Type of the HTML file right
in the HTML file itself, using some kind of special tag. Of course this drove purists
crazy… how can you read the HTML file until you know what encoding it’s in?!
Luckily, almost every encoding in common use does the same thing with
characters between 32 and 127, so you can always get this far on the HTML page
without starting to use funny letters:

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-
8">

But that meta tag really has to be the very first thing in the <head> section
because as soon as the web browser sees this tag it’s going to stop parsing the
page and start over after reinterpreting the whole page using the encoding you
specified.

What do web browsers do if they don’t find any Content-Type, either in the http

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-kno… 10/12

headers or the meta tag? Internet Explorer actually does something quite
interesting: it tries to guess, based on the frequency in which various bytes
appear in typical text in typical encodings of various languages, what language
and encoding was used. Because the various old 8 bit code pages tended to put
their national letters in different ranges between 128 and 255, and because
every human language has a different characteristic histogram of letter usage,
this actually has a chance of working. It’s truly weird, but it does seem to work
often enough that naïve web-page writers who never knew they needed a
Content-Type header look at their page in a web browser and it looks ok, until
one day, they write something that doesn’t exactly conform to the letter-
frequency-distribution of their native language, and Internet Explorer decides
it’s Korean and displays it thusly, proving, I think, the point that Postel’s Law
about being “conservative in what you emit and liberal in what you accept” is
quite frankly not a good engineering principle. Anyway, what does the poor
reader of this website, which was written in Bulgarian but appears to be Korean
(and not even cohesive Korean), do? He uses the View | Encoding menu and tries
a bunch of different encodings (there are at least a dozen for Eastern European
languages) until the picture comes in clearer. If he knew to do that, which most
people don’t.

For the latest version of CityDesk, the web site management software published
by my company, we decided to do everything internally in UCS-2 (two byte)
Unicode, which is what Visual Basic, COM, and Windows NT/2000/XP use as their
native string type. In C++ code we just declare strings as wchar_t (“wide char”)
instead of char and use the wcs functions instead of the str functions (for
example wcscat and wcslen instead of strcat and strlen). To create a literal
UCS-2 string in C code you just put an L before it as so: L"Hello".

When CityDesk publishes the web page, it converts it to UTF-8 encoding, which
has been well supported by web browsers for many years. That’s the way all 29

http://www.fogcreek.com/CityDesk
http://www.fogcreek.com/
https://www.joelonsoftware.com/navLinks/OtherLanguages.html

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-kno… 11/12

← PREVIOUS POST

01

language versions of Joel on Software are encoded and I have not yet heard a
single person who has had any trouble viewing them.

This article is getting rather long, and I can’t possibly cover everything there is to
know about character encodings and Unicode, but I hope that if you’ve read this
far, you know enough to go back to programming, using antibiotics instead of
leeches and spells, a task to which I will leave you now.

SUBSCRIBE!

You’re reading Joel on Software, stuffed with years and years of completely raving mad articles
about software development, managing software teams, designing user interfaces, running
successful software companies, and rubber duckies.

If you want to know when I publish something new, I recommend getting an RSS reader like
NewsBlur and subscribing to my RSS feed.

ABOUT THE AUTHOR.

In 2000 I co-founded Fog Creek Software, where we created
lots of cool things like the FogBugz bug tracker, Trello, and
Glitch. I also worked with Jeff Atwood to create Stack
Overflow and served as CEO of Stack Overflow from 2010-
2019.
Today I serve as the chairman of the board for Stack
Overflow, Glitch, and HASH.

NEXT POST →

10

https://www.joelonsoftware.com/2003/10/01/01-3/
https://www.joelonsoftware.com/navLinks/OtherLanguages.html
https://www.joelonsoftware.com/
https://newsblur.com/
https://www.joelonsoftware.com/feed/
https://stackoverflow.com/
https://glitch.com/
https://hash.ai/
https://www.joelonsoftware.com/2003/10/10/10/

24.04.2022, 16:11 The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha…

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-kno… 12/12

PROUDLY POWERED BY WORDPRESS

https://wordpress.org/
https://www.joelonsoftware.com/2003/10/10/10/

