
VxWorks
6.2

COMMAND-L INE TOOLS USER’S GUIDE

®

VxWorks Command-Line Tools User's Guide

Copyright © 2005 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation under the following directory:
installDir/product_name/3rd_party_licensor_notice.pdf.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Command-Line Tools User’s Guide, 6.2

6 Oct 05
Part #: DOC-15678-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 Introduction ... 1

1.2 What’s in This Book ... 2

2 Creating a Development Shell with wrenv ... 5

2.1 Introduction ... 5

2.2 Invoking wrenv .. 6

2.3 Options to wrenv .. 7

2.4 install.properties and package.properties ... 9

3 Working with Projects and Components ... 11

3.1 Introduction ... 11

3.2 Using vxprj .. 12

3.2.1 Creating Kernel Configuration Projects .. 12

Copying Projects ... 14
Using Profiles .. 14

3.2.2 Deleting Projects ... 15

VxWorks
Command-Line Tools User’s Guide, 6.2

iv

3.2.3 Modifying Projects ... 15

Adding Components ... 15
Removing Components ... 16
Setting Configuration Parameter Values .. 17
Changing the Project Makefile Name ... 17
Adding and Removing Individual Files ... 18

3.2.4 Generating Project and Component Diagnostics 18

Obtaining a List of Components .. 18
Checking a Component ... 19
Checking Component Dependencies .. 20
Listing Configuration Parameters and Values 20
Examining the Source Files in a Project .. 21

3.3 Using cmpScriptLib and Other Libraries .. 21

3.4 RTP and Library Projects .. 23

4 Building Kernel and Application Projects .. 25

4.1 Introduction ... 25

4.2 Building Kernel Configuration Projects with vxprj .. 26

4.2.1 Examining Build Specifications and Rules ... 27

4.2.2 Changing Build Settings .. 27

Adding and Changing Build Rules ... 28

4.3 Building Projects with cmpScriptLib ... 29

4.4 Other VxWorks Project Types .. 29

4.5 Calling make Directly .. 30

4.6 RTP Applications and Libraries .. 30

RTP Applications .. 31
RTP Libraries ... 31
Makefile and Directory Structure .. 31

4.6.1 Rebuilding VxWorks RTP (User-Mode) Libraries 32

4.6.2 Make Variables .. 32

 Contents

v

5 Connecting to a Target .. 37

5.1 Introduction ... 37

5.2 Connecting to a Target Board ... 37

5.3 Using the VxWorks Simulator ... 38

6 Debugging Applications with the Host Shell 41

6.1 Introduction ... 41

6.2 Starting and Stopping the Host Shell .. 42

6.3 Switching Modes .. 42

6.4 Command Mode ... 42

6.5 C Interpreter .. 44

6.6 Tcl Mode ... 45

6.7 GDB Mode ... 45

Appendices

A Host Shell Commands and Options .. 47

A.1 Introduction ... 47

A.2 Host Shell Basics .. 48

A.2.1 Starting the Host Shell ... 48

Host Shell Startup Options ... 49

A.2.2 Switching Interpreters ... 50

A.2.3 Setting Shell Environment Variables ... 50

A.2.4 Stopping the Host Shell ... 54

A.3 Using the Command Interpreter ... 54

A.3.1 General Host Shell Commands .. 55

VxWorks
Command-Line Tools User’s Guide, 6.2

vi

A.3.2 Displaying Target Agent Information ... 56

A.3.3 Working with Memory .. 56

A.3.4 Displaying Object Information ... 57

A.3.5 Working with Symbols .. 57

Accessing a Symbol’s Contents and Address 57

A.3.6 Displaying, Controlling, and Stepping Through Tasks 59

A.3.7 Setting Shell Context Information .. 60

A.3.8 Displaying System Status .. 61

A.3.9 Using and Modifying Aliases ... 61

A.3.10 Launching RTPs .. 63

Redirecting Output to the Host Shell .. 64
Monitoring and Debugging RTPs .. 64
Setting Breakpoints .. 65

A.4 Using the C Interpreter .. 66

A.4.1 Managing Tasks .. 66

A.4.2 Displaying System Information ... 68

A.4.3 Modifying and Debugging the Target ... 70

A.4.4 Running Target Routines from the Host Shell 71

Invocations of VxWorks Subroutines .. 72
Invocations of Application Subroutines ... 72
Resolving Name Conflicts Between Host and Target 72

A.5 Using the Tcl Interpreter ... 72

A.5.1 Accessing the WTX Tcl API ... 73

A.6 Using the GDB Interpreter ... 73

A.6.1 General GDB Commands .. 73

A.6.2 Working with Breakpoints .. 74

A.6.3 Specifying Files to Debug .. 75

A.6.4 Running and Stepping Through a File .. 76

A.6.5 Displaying Disassembler and Memory Information 77

 Contents

vii

A.6.6 Examining Stack Traces and Frames ... 77

A.6.7 Displaying Information and Expressions ... 77

A.6.8 Displaying and Setting Variables ... 78

A.7 Using the Built-in Line Editor ... 79

A.7.1 vi-Style Editing ... 79

Switching Modes and Controlling the Editor 80
Moving and Searching in the Editor ... 80
Inserting and Changing Text .. 81
Deleting Text ... 82
Put and Undo Commands .. 82

A.7.2 emacs-Style Editing .. 83

Moving the Cursor ... 83
Deleting and Recalling Text .. 83
Special Commands ... 84

A.7.3 Command Matching .. 84

Directory and File Matching ... 85

A.7.4 Command and Path Completion ... 85

A.8 Running the Host Shell in Batch Mode ... 85

Index .. 87

VxWorks
Command-Line Tools User’s Guide, 6.2

viii

1

 1
Overview

1.1 Introduction 1

1.2 What’s in This Book 2

1.1 Introduction

This guide describes the command-line host tools provided with Wind River
Workbench. It is a supplement to the Wind River Workbench User’s Guide for
programmers who prefer to do most development tasks outside of the Workbench
IDE’s graphical interface or who need to create scripted build environments.

The Workbench IDE includes many features, such as code browsing and multicore
debugging, that are not available from the command line. For a complete
description of the Workbench environment, see the Wind River Workbench User’s
Guide. For information about the VxWorks operating system and developing
applications that run under it, see the VxWorks Kernel Programmer’s Guide and
VxWorks Application Programmer’s Guide.

Workbench ships with two compilers and associated toolkits: The Wind River
Compiler (sometimes called the Diab compiler) and GCC (part of the GNU
project). Both toolkits use the GNU make utility for VxWorks application
development. To the largest extent possible, these toolkits have been designed for
interoperability, but it is not always safe to assume that code written for one set of
tools will work perfectly with the other. While examples in this guide may use

VxWorks
Command-Line Tools User’s Guide, 6.2

2

either or both compilers, it is best to select one compiler and toolkit before starting
a project.

The Wind River Compiler and tools are documented in a separate user’s guide for
each supported target architecture. For example, information about the PowerPC
compiler is in the Wind River Compiler for PowerPC User’s Guide. GCC and the other
GNU tools are documented in a series of manuals from the Free Software
Foundation, including Using the GNU Compiler Collection, that are provided with
this release.

Workbench includes a variety of other tools whose use is illustrated in this guide.
In many cases, readers are referred to another document for detailed information
about a tool. This guide is a roadmap for command-line development, but it is not
self-contained.

Before starting to work with the tools, read 2. Creating a Development Shell with
wrenv.

1.2 What’s in This Book

This guide contains information about the following topics:

■ This chapter introduces the command-line tools and reviews the contents of
the guide.

■ Chapter 2 shows how to use the environment utility (wrenv) to set up a host
development shell.

■ Chapter 3 explains how to create and modify projects with vxprj and other Tcl
scripts. It discusses VxWorks components and kernel configuration.

■ Chapter 4 explains how to build applications with vxprj and other tools, and
describes the VxWorks build model.

NOTE: Throughout this guide, UNIX refers to both Solaris and Linux host
development environments. Windows refers to all supported versions of Microsoft
Windows.

Examples in this guide include both UNIX and Windows command lines. It is
assumed that the reader can make appropriate modifications—such as changing
forward slashes (/) to backward slashes (\)—depending on the environment.

1 Overview
1.2 What’s in This Book

3

1
■ Chapter 5 explains how to run compiled applications on targets and

simulators.

■ Chapter 6 explains how to use the VxWorks host shell to run and debug
applications.

■ Appendix A contains a list of options and commands for the VxWorks host
shell.

VxWorks
Command-Line Tools User’s Guide, 6.2

4

5

 2
Creating a Development Shell

with wrenv

2.1 Introduction 5

2.2 Invoking wrenv 6

2.3 Options to wrenv 7

2.4 install.properties and package.properties 9

2.1 Introduction

To use the tools efficiently from the command line, you need to configure some
environment variables and other settings. The best way to do this is with the
wrenv environment utility, which sets up a development shell based on
information in the install.properties file.

When using the Workbench tools from the command line, always begin by invoking the
environment utility as shown in the next section. The wrenv utility, which is also run
by the IDE on startup, guarantees a consistent, portable execution environment
that works from the IDE, from the command line, and in automated build systems.
Throughout this guide, whenever host operating system commands are shown or
described, it is assumed that you are working from a properly configured
development shell created by wrenv.

VxWorks
Command-Line Tools User’s Guide, 6.2

6

2.2 Invoking wrenv

Assuming a standard installation of Workbench, you can invoke wrenv as follows.

UNIX

At your operating system’s shell prompt, type the following:

% installDir/wrenv.sh -p vxworks-6.0

However, if your shell configuration file overwrites the environment every time a
new shell is created, this may not work. If you find that you still cannot invoke the
Workbench tools after executing the command above, try this instead:

% eval `installDir/wrenv.sh -p vxworks-6.0 -o print_env -f shell`

where shell is sh or csh, depending on the current shell program. For example:

% eval `./wrenv.sh -p vxworks-6.0 -o print_env -f sh`

Windows

You can invoke wrenv from the command prompt by typing the following:

C:\> installDir\wrenv.exe -p vxworks-6.0

An easier method is to use the shortcut installed under Start > Programs >
Wind River > VxWorks 6.0 > VxWorks 6.0 Development Shell. This shortcut
invokes wrenv to open a Windows command prompt configured for Workbench
development.

Workbench also supplies a fully configured Windows version of the Z shell
(sh.exe). The Z shell, sometimes called zsh, gives Windows users a UNIX-like
command-line interface.

2 Creating a Development Shell with wrenv
2.3 Options to wrenv

7

2

2.3 Options to wrenv

The wrenv utility accepts several options, summarized in Table 2-1, that can be
useful in complex build environments. For most purposes, -p is the only option
you need.

Table 2-1 Options for wrenv

Option Meaning Example

-e Do not redefine existing environment variables.
(Variables identified with addpath in
install.properties are still modified.)

% wrenv.sh -p vxworks-6.0 -e

-f format Select format for print_env or print_vars (see -o):

plain (the default)
sh
csh
bat
tcl

C:\> wrenv -p vxworks-6.0 -o
print_vars -f sh

-i path Specify the location of install.properties.
(Overrides the default method of finding
install.properties.)

% wrenv.sh -p vxworks-6.0 -i
directoryPath/install.properties

-o operation Select operation:

run
The default operation. Configures the
environment and creates a command shell
in which subsequent commands are
executed. Checks the value of SHELL
(usually defined under UNIX) to
determine which shell program to invoke;
if SHELL is not defined, it checks ComSpec
(Windows).

C:\> wrenv -p vxworks-6.0 -o
run

% wrenv.sh -p vxworks-6.0 -o
run

print_varsa

Show environment settings that would be
made if wrenv were invoked with -o run.

C:\> wrenv -o print_vars

VxWorks
Command-Line Tools User’s Guide, 6.2

8

print_enva
Like print_vars, but shows only variables
that are exported to the system
environment. (Such variables are
identified with export or addpath, rather
than define, in install.properties.)

% wrenv.sh -o print_env

print_packagesa
List the packages defined in
install.properties and their attributes. (The
displayed name of a package can later be
specified with the -p option.)

C:\> wrenv -o print_packages

print_compatiblea
Use with -p. Show the list of packages
defined in installation.properties as
compatible with the specified package.
Helpful for determining which IDE
version works with a given target OS
platform.

% wrenv.sh -p vxworks-6.0 -o
print_compatible

print_package_namea
Use with -r. Show the name of the package
in the specified root directory.

C:\> wrenv -r directory -o
print_package_name

-p package Specify a package (a set of Workbench components)
for environment initialization. The package must
be defined in install.properties.

% wrenv.sh -p vxworks-6.0

-r root Specify the root path for a package. (Overrides the
default method of finding packages.) Usually, the
root path is a directory under installDir that has the
same name as the package.

C:\> wrenv -p vxworks-6.0 -r
directory

-v Verbose mode. Show all altered environment
settings.

% wrenv.sh -p vxworks-6.0 -v

Table 2-1 Options for wrenv (cont’d)

Option Meaning Example

2 Creating a Development Shell with wrenv
2.4 install.properties and package.properties

9

2

2.4 install.properties and package.properties

The install.properties file is a hierarchical registry of package components. It
aggregates information from the package.properties files that accompany each
installed package. An entry in a properties file has the following form:

rootkey.subkey[=value][.subkey[=value] ...]

env=value Set the specified variable in addition to other
environment settings. Overrides
install.properties.b env=value must be the last item
on the command line, except for command [args] (see
below).

C:\> wrenv -p vxworks-6.0
PATH=directory

command
[args]

Execute the specified command in the new shell
environment. (Does not open a new shell.) Must be
the last item on the command line.

% wrenv.sh -p vxworks-6.0 ls
*.sh

a. These operations are primarily for internal use and may change in later releases.
b. Once a setting has been overridden with this option, wrenv maintains the override on subsequent

executions—even if the option is omitted from the command line—as long as the new shell is running. A
list of overridden settings is stored in a temporary variable called WIND_PROTECTED_ENV that
disappears when the shell terminates.

Table 2-1 Options for wrenv (cont’d)

Option Meaning Example

VxWorks
Command-Line Tools User’s Guide, 6.2

10

A root key (for example, vxworks60) identifies each package. Subkeys include
name, version, and so forth. The entries for a typical package look like this:

vxworks60.name=vxworks-6.0
vxworks60.version=6.0
vxworks60.type=platform
vxworks60.subtype=vxworks
vxworks60.label=Wind River VxWorks 6.0

this entry shows which version of Workbench works with vxworks-6.0
vxworks60.compatible=workbench-2.2

eval entries tell wrenv to make environment settings; see below
vxworks60.eval.01=export WIND_HOME=$(builtin:InstallHome)
vxworks60.eval.02=export WIND_BASE=$(WIND_HOME)$/vxworks-6.0
vxworks60.eval.03=require workbench-2.2
vxworks60.eval.04=addpath PATH $(WIND_BASE)$/host$/$(WIND_HOST_TYPE)$/bin
...

An eval subkey specifies an environment processing command, such as defining
an environment variable. Each eval subkey has a unique integer subkey appended
to it that determines the order in which wrenv executes commands. However, if
there are multiple definitions for the same variable, the first (lowest-numbered)
definition takes precedence and subsequent definitions are ignored.

A define value for an eval key defines a variable for internal use, but does not
export it to the system environment. An export value defines a variable and
exports it to the system environment. An addpath value prefixes an element to an
existing path variable.

A require value for an eval key specifies the name of another package in which to
continue eval processing. An optional value is similar to a require value, except
that the command is treated as a no-op if the referenced package does not exist.

Comment lines in a properties file begin with a # symbol.

Properties files are created during installation and should not ordinarily be edited.

11

 3
Working with Projects

and Components

3.1 Introduction 11

3.2 Using vxprj 12

3.3 Using cmpScriptLib and Other Libraries 21

3.4 RTP and Library Projects 23

3.1 Introduction

This chapter explains how to create and modify projects with the vxprj utility and
related Tcl libraries. It contains information about VxWorks components and
kernel configuration.

A VxWorks component is a functional unit of code and configuration parameters. A
project is a collection of components and build options used to create an application
or kernel image. Components are defined with the Component Description
Language (CDL) and stored in .cdf files; for more information about components
and CDL, see the VxWorks Kernel Programmer’s Guide. Projects are defined in .wpj
or .wrproject files1; for more information about projects, see the Wind River
Workbench User’s Guide.

1. .wrproject files are created and used by the IDE.

VxWorks
Command-Line Tools User’s Guide, 6.2

12

Workbench provides a variety of tools for managing projects:

■ For most purposes, vxprj is the easiest way to manage projects from the
command line. However, vxprj manages kernel configuration projects only.
(A kernel configuration project, also called a VxWorks image project, is a complete
VxWorks kernel, possibly with additional application code, that can be
downloaded and run on a target.)

■ Other Tcl libraries supplied with VxWorks—especially cmpScriptLib—
provide direct access to scripts called by vxprj.

■ The IDE‘s project management facility handles additional types of project,
such as downloadable kernel modules, shared libraries, RTPs, and file system
projects, and offers features of its own that are not available from
command-line tools.

It is always possible to create and modify projects by directly editing VxWorks
component and source code files. However, if you plan to continue using the
Workbench project management tools, direct editing of generated project files or
makefiles is not recommended.

3.2 Using vxprj

This guide covers only the most important vxprj functionality. For a complete
description of vxprj and all of its options, see the vxprj reference entry. For
information about using vxprj to invoke the compiler, see 4. Building Kernel and
Application Projects.

3.2.1 Creating Kernel Configuration Projects

The command-line vxprj utility can create a project based on an existing board
support package (BSP)—that is, a collection of files needed to run VxWorks on a
specific piece of hardware.2 To create a kernel configuration project, type the
following:

vxprj create [-source] [-profile profile] BSP tool [projectFile|projectDirectory]

2. For information about BSPs, see the VxWorks BSP Developer’s Guide.

3 Working with Projects and Components
3.2 Using vxprj

13

3

The command sequence above uses the following arguments:

-source

An optional argument to enable source build. A project can be built from
source if both of the following are true:

■ The -source option is used.
■ All components in your project support the -source option.

If either of these conditions is not true, the project is created from pre-built
libraries (the default). After the project has been created, you can change the
build mode.

Note that only certain kernel profiles support the -source option. If you modify
a pre-defined kernel profile by including additional components, building
from source may not be possible.

For complete details on this option, see the vxprj reference entry.

-profile profile

An optional argument to specify the kernel profile type to be built. If you do
not specify a profile, the project is built according to the default profile that is
defined for your BSP. For information on profiles, see Using Profiles, p.14, and
the VxWorks Kernel Programmer’s Guide: Kernel.

BSP

The name or location of a BSP.

tool

A recognized compiler (usually diab or gnu).

projectFile|projectDirectory

An optional argument to specify the name of the project file to create, or the
name of its parent directory. If no filename or directory is specified, vxprj
generates a name based on the other input arguments and stores the resulting
project in a new directory under installDir/target/proj.

If you do not have a target board for your application, the easiest way to
experiment with vxprj is to create projects for the VxWorks Simulator. A standard
Workbench installation includes a “BSP” for the simulator. For example:

C:\> vxprj create simpc diab C:\myProj\myproj.wpj

VxWorks
Command-Line Tools User’s Guide, 6.2

14

This command creates a kernel configuration project to be built with the Wind
River compiler (diab) and run on the VxWorks Simulator for Windows (simpc).
The project file (myproj.wpj), source files, and makefile are stored in C:\myProj.
To generate a similar project for Solaris or Linux hosts, specify solaris or linux as
the BSP, type the following:

% vxprj create solaris diab /myProj/myproj.wpj

$ vxprj create linux diab /myProj/myproj.wpj

(For more information about the VxWorks Simulator, see 5.3 Using the VxWorks
Simulator, p.38, and the Wind River VxWorks Simulator User’s Guide.)

The following command creates a project in the default location using the
wrSbcPowerQuiccII (PowerPC) board support package:

% vxprj create wrSbcPowerQuiccII diab

When this command is executed, vxprj creates a subdirectory for the new project
and reports the location of directory.

The following command creates a GCC project in C:\myProjects\mips64\ using
the rh5500_mips64 BSP:

C:\> vxprj create rh5500_mips64 gnu C:\myProjects\mips64\mipsProject.wpj

The project file created by this command is called mipsProject.wpj.

Copying Projects

To copy an existing project to a new location, type the following:

vxprj copy [sourceFile] destinationFile|destinationDirectory

If no source file is specified, vxprj looks for a .wpj file in the current directory. If a
destination directory—but no destination filename—is specified, vxprj creates a
project file with the same name as the directory it resides in. For example:

% vxprj copy myproj.wpj /New

This command copies myproj.wpj and associated files to /New/New.wpj.

Using Profiles

A profile is a preconfigured set of components that provides a starting point for
custom kernel configuration. For example, PROFILE_DEVELOPMENT includes a
variety of standard development and debugging tools. The following command

3 Working with Projects and Components
3.2 Using vxprj

15

3

creates a PROFILE_DEVELOPMENT-based project in the default location using the
wrSbcPowerQuiccII BSP:

% vxprj create -profile PROFILE_DEVELOPMENT wrSbcPowerQuiccII diab

For a list of profile names and information on components included in each profile,
see the VxWorks Kernel Programmer’s Guide: Kernel.

3.2.2 Deleting Projects

To delete a project, type the following:

vxprj delete projectFile

where projectFile is the .wpj file associated with the project. The delete command
permanently deletes the directory in which projectFile resides and all of its contents
and subdirectories. (Do not run the command from the project directory you are
trying to remove.) For example:

% vxprj delete /myProj/myproj.wpj

This command deletes the entire myProj directory.

3.2.3 Modifying Projects

Adding Components

To add components to a kernel configuration project, type the following:

vxprj component add [projectFile] component [component ...]

If no project file is specified, vxprj looks for a .wpj file in the current directory and
adds the specified components to that file. Components are identified by the
names used in .wpj and .cdf files, which have the form INCLUDE_xxx. For
example:

% vxprj component add MyProject.wpj INCLUDE_MMU_BASIC INCLUDE_ROMFS

This command adds support for a memory management unit and the ROMFS
target file system to MyProject.wpj.

! CAUTION: vxprj delete removes any file passed to it, regardless of the file’s name
or extension, along with the entire directory in which the file resides. It does not
verify that the specified file is a Workbench project file, nor does it attempt to save
user-generated files.

VxWorks
Command-Line Tools User’s Guide, 6.2

16

Adding Bundles

Some components are grouped into bundles that provide related or complementary
functionality. Adding components in bundles is convenient and avoids
unresolved dependencies.

To add a bundle to a project, type the following:

vxprj bundle add [projectFile] bundle [bundle ...]

For example:

% vxprj bundle add BUNDLE_RTP_DEVELOP

This command adds process (RTP) support to the kernel configuration project
in the current working directory.

% vxprj bundle add MyProject.wpj BUNDLE_RTP_DEVELOP
BUNDLE_STANDALONE_SHELL BUNDLE_POSIX BUNDLE_EDR

This command adds support for processes, the kernel shell, POSIX, and error
detection and reporting to MyProject.wpj.

Removing Components

To remove components from a kernel configuration project, type the following:

vxprj component remove [projectFile] component [component ...]

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj component remove MyProject.wpj INCLUDE_MMU_BASIC INCLUDE_DEBUG

This command removes the specified components as well as any components that are
dependent on them.

Removing Bundles

To remove a bundle, type the following:

vxprj bundle remove [projectFile] bundle [bundle ...]

Removing a bundle removes all the components it contains (regardless of how
they were added), so it is best to check the contents of a bundle before using
remove. See Examining Bundles, p.19.

3 Working with Projects and Components
3.2 Using vxprj

17

3

Setting Configuration Parameter Values

To set the value of a configuration parameter, type the following:

vxprj parameter set [projectFile] parameter value

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj parameter set MyProject.wpj VM_PAGE_SIZE 0x10000

This command sets VM_PAGE_SIZE to 0x10000. (To list a project’s configuration
parameters, see Listing Configuration Parameters and Values, p.20.)

Parameter values that contain spaces should be enclosed in quotation marks. If a
parameter value itself contains quotation marks, they can be escaped with \
(Windows) or the entire value surrounded with ’...’ (UNIX). An easier way to set
parameter values that contain quotation marks is to use setstring, which tells vxprj
to treat everything from the space after the parameter argument to the end of the
command line as a single string. For example:

% vxprj parameter setstring SHELL_DEFAULT_CONFIG "LINE_LENGTH=128"

This command sets SHELL_DEFAULT_CONFIG to “LINE_LENGTH=128”,
including the quotation marks.

To reset a parameter to its default value, type the following:

vxprj parameter reset [projectFile] parameter [parameter ...]

Changing the Project Makefile Name

To change the name of a project’s makefile, type the following:

vxprj makefile [projectFile] newMakefileName

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj makefile make.rules

This command changes the name of the makefile (for the project in the current
working directory) from the default Makefile to make.rules.

VxWorks
Command-Line Tools User’s Guide, 6.2

18

Adding and Removing Individual Files

To add a specific source code file to a kernel configuration project, type the
following:

vxprj file add [projectFile] sourceFile

If no project file is specified, vxprj looks for a .wpj file in the current directory.
When the project is built, the specified source file is compiled and linked into the
resulting kernel image.

To remove a file from a project, type the following:

vxprj file remove [projectFile] sourceFile

3.2.4 Generating Project and Component Diagnostics

Obtaining a List of Components

To see a list of components, type the following:

vxprj component list [projectFile] [type] [pattern]

If no project file is specified, vxprj looks for a .wpj file in the current directory. If
pattern is specified, vxprj lists only components whose names contain pattern as a
substring; if pattern is omitted, all components are listed.

The type argument can be all, included, excluded, or unavailable. The default is
included, which lists components included in the project. Specify excluded to list
installed components that are not included in the project; all to list all installed
components; or unavailable to list components that are installed but not available
for the project. (An available component is one that is installed, with all its
dependent components, under the VxWorks directory.)

For example:

% vxprj component list MyProject.wpj SHELL

This command returns all components in MyProject.wpj whose names
contain “SHELL”, such as INCLUDE_SHELL_BANNER and
INCLUDE_RTP_SHELL_C.

% vxprj component list MyProject.wpj excluded VM

This command returns all available components with names containing “VM”
that are not included in MyProject.wpj.

3 Working with Projects and Components
3.2 Using vxprj

19

3

Examining Bundles

To see a list of bundles, type the following:

vxprj bundle list [projectFile] [type] [pattern]

For type and pattern, see Obtaining a List of Components, p.18.

To see the components and other properties of a bundle, type the following:

vxprj bundle get [projectFile] bundle

Examining Profiles

To see a list of profiles, type the following:

vxprj profile list [projectFile] [pattern]

For pattern, see Obtaining a List of Components, p.18.

To see the components and other properties of a profile, type the following:

vxprj profile get [projectFile] profile

Comparing the Components in Different Projects

To compare the components in two projects, type the following:

vxprj component diff [projectFile] projectFile|directory

If only one project file or directory is specified, vxprj looks for a .wpj file in the
current directory and compares it to the specified project. For example:

% vxprj component diff /Apps/SomeProject.wpj

This command compares the components included in /Apps/SomeProject.wpj to
those included in the project in the current working directory. It returns a list of the
unique components in each project.

Checking a Component

To verify that components are correctly defined, type the following:

vxprj component check [projectFile] [component ...]

If no project file is specified, vxprj looks for a .wpj file in the current directory. If
no component is specified, vxprj checks every component in the project. For
example:

% vxprj component check MyProject.wpj

VxWorks
Command-Line Tools User’s Guide, 6.2

20

This command invokes the cmpTest routine, which tests for syntactical and
semantic errors.

Checking Component Dependencies

To generate a list of component dependencies, type the following:

vxprj component dependencies [projectFile] component [component ...]

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj component dependencies INCLUDE_OBJ_LIB

This command displays a list of components required by INCLUDE_OBJ_LIB.

Listing Configuration Parameters and Values

To list a project’s configuration parameters, type the following:

vxprj parameter list [projectFile] [pattern]

If no project file is specified, vxprj looks for a .wpj file in the current directory. If
pattern is specified, vxprj lists only parameters whose names contain pattern as a
substring; if pattern is omitted, all parameters are listed. For example:

% vxprj parameter list MyProject.wpj TCP

This command lists all parameters defined in MyProject.wpj whose names
contain “TCP”, such as TCP_MSL_CFG.

To list a project’s parameters and their values, type the following:

vxprj parameter value [projectFile] [Namepattern [valuePattern]]

If no project file is specified, vxprj looks for a .wpj file in the current directory. If
namePattern is specified, vxprj lists only parameters whose names contain
namePattern as a substring; if valuePattern is specified, vxprj lists only parameters
whose values contain valuePattern as a substring. For example:

% vxprj parameter value

% vxprj parameter value USER TRUE

The first command lists all parameters and values for the project in the current
directory. The second lists only parameters whose names contain “USER” and
whose values contain “TRUE”.

3 Working with Projects and Components
3.3 Using cmpScriptLib and Other Libraries

21

3

Comparing Parameters in Different Projects

To compare the configuration parameters of two projects, type the following:

vxprj parameter diff [projectFile] projectFile|directory

If only one project file or directory is specified, vxprj looks for a .wpj file in the
current directory and compares it to the specified project. For example:

% vxprj parameter diff /MyProject/MyProject.wpj /Apps/SomeProject.wpj

This command compares the parameters in MyProject.wpj to those in
SomeProject.wpj and returns a list of unique parameter-value pairs for each
project.

Examining the Source Files in a Project

To list a project’s source code files, type the following:

vxprj file list [projectFile] [pattern]

If no project file is specified, vxprj looks for a .wpj file in the current directory. If
pattern is specified, vxprj lists only files whose names contain pattern as a substring;
otherwise, all files are listed.

To see build information for a source code file, type the following:

vxprj file get [projectFile] sourceFile

3.3 Using cmpScriptLib and Other Libraries

The VxWorks tools include several Tcl libraries, such as cmpScriptLib, that
provide routines for project and component management. Additional information
about these routines is available in the reference pages for each library and in the
VxWorks Kernel Programmer’s Guide.

To access cmpScriptLib, you need a correctly configured Tcl shell. Start by
entering the following:

C:\> tclsh
package require OsConfig

VxWorks
Command-Line Tools User’s Guide, 6.2

22

From the new command prompt you can use routines in cmpScriptLib, including
cmpProjCreate, which creates kernel configuration projects. For example:

UNIX
cmpProjCreate pcPentium4 /MyProject/project1.wpj

Windows
cmpProjCreate pcPentium4 C:\\MyProject\\project1.wpj

This command creates a kernel configuration project using the pcPentium4 BSP.
Notice the double backslashes (\\) in the Windows directory path.

To manipulate an existing project, first identify the project by “opening” it with
cmpProjOpen. (A project that has just been created with cmpProjCreate or
cmpProjCopy is already open. Only one project at a time can be open within a Tcl
shell.) When you are finished, you can close the project with cmpProjClose:

cmpProjOpen ProjectFile
... additional commands ...
cmpProjClose

Another useful routine in cmpScriptLib is autoscale, which analyzes projects and
generates a list of unused components. This can help to produce the most compact
executable. For example:

cmpProjOpen myProj.wpj
autoscale
... output ...
cmpProjClose

These commands generate a list of components that can be removed from
myProj.wpj (because their code is never called) as well as a list of components that
should be added to the project (because of dependencies). The autoscale facility
can also be invoked through vxprj; see the vxprj reference entry for details.

The vxprj utility gives you access to most cmpScriptLib functionality without
having to start a Tcl shell or write Tcl scripts. For example, consider the following
vxprj command:

% vxprj component remove myProj.wpj INCLUDE_WDB

This command is equivalent to the following:

% tclsh
package require OsConfig
cmpProjOpen myProj.wpj
cmpRemove INCLUDE_WDB
cmpProjClose

3 Working with Projects and Components
3.4 RTP and Library Projects

23

3

3.4 RTP and Library Projects

User-mode (RTP) application and library projects can be created by following the
models in target/usr/apps/samples/ and target/usr/src/usr/ under the VxWorks
installation directory. For more information, see 4.6 RTP Applications and Libraries,
p.30.

VxWorks
Command-Line Tools User’s Guide, 6.2

24

25

 4
Building Kernel and
Application Projects

4.1 Introduction 25

4.2 Building Kernel Configuration Projects with vxprj 26

4.3 Building Projects with cmpScriptLib 29

4.4 Other VxWorks Project Types 29

4.5 Calling make Directly 30

4.6 RTP Applications and Libraries 30

4.1 Introduction

This chapter explains how to build projects using the vxprj facility, cmpScriptLib
routines, and make, and how to generate makefiles for building VxWorks kernel
libraries.

The tools and methods available for build management depend on the type of
project under development. While the IDE supports most project types, the
command-line facilities are less uniform:

■ Kernel configuration (VxWorks image) projects can be built with vxprj or
cmpScriptLib, or by calling make directly. The preferred method is to use
vxprj. The output of a build is a group of object (.o) files and a VxWorks kernel
image (vxWorks).

VxWorks
Command-Line Tools User’s Guide, 6.2

26

■ RTP (user-mode) applications and libraries can be built by calling make
directly. A standard series of make rules is available for this purpose. The
output of an RTP application build is a group of object (.o) files and an
executable (.vxe) file that runs under VxWorks. The output of an RTP library
build is a group of object (.o) files and an archive (.a) file that can be linked into
RTP applications.

■ Custom Boot Loaders can be built by running make bootrom in the BSP
directory. For details, see the VxWorks Kernel Programmer’s Guide: Kernel.

■ Shared libraries, downloadable kernel modules, and file system projects are
most easily handled from the IDE, but they can be built by calling make
directly.

Regardless of how build management is approached, Workbench supports two
toolkits—GCC and the Wind River Compiler—both of which use the GNU make
utility. When you create a kernel configuration project with vxprj or the IDE, you
must select a toolkit. When you build other projects from the command line, you
can (assuming that your application code is portable) select a toolkit at the time of
compilation.

For information on building VxWorks kernel libraries, see the getting started
guide for your platform product.

4.2 Building Kernel Configuration Projects with vxprj

A kernel configuration (VxWorks image) project includes build rules based on the
format used in makefiles. Projects also include build specifications, which organize
and configure build rules. Build specifications depend on the type of project and
BSP, but a typical project might have four build specifications: default,
default_rom, default_romCompress, and default_romResident; for information
about these build specifications, see the VxWorks User’s Guide. A build
specification defines variables passed to make and flags passed to the compiler.
Each project has a current build specification, initially defined as default.

To build a kernel configuration project with vxprj, type the following:

vxprj build [projectFile] [buildSpecification|buildRule]

If no project file is specified, vxprj looks for a .wpj file in the current directory. If
the second argument is omitted, vxprj uses the project’s current build

4 Building Kernel and Application Projects
4.2 Building Kernel Configuration Projects with vxprj

27

4

specification. Output from the compiler is saved in a subdirectory—with the same
name as the build specification—under the project’s source directory. For example:

% vxprj build

% vxprj build myproj.wpj default_rom

The first command builds the project found in the current directory using the
project’s current build specification. The second command builds the project
defined in myproj.wpj using the default_rom build specification.

4.2.1 Examining Build Specifications and Rules

To see the name of the current build specification, type the following:

vxprj build get [projectFile]

If no project file is specified, vxprj looks for a .wpj file in the current directory. To
see all available build specifications for a project, type the following:

vxprj build list [projectFile]

To see all the build rules in a project’s current build specification, type the
following:

vxprj buildrule list [projectFile]

To examine a build rule in a project’s current build specification, type the
following:

vxprj buildrule get [projectFile] buildRule

For example:

% vxprj buildrule get prjConfig.o

This command displays the prjConfig.o build rule.

4.2.2 Changing Build Settings

To change a project’s current build specification, type the following:

vxprj build set [projectFile] buildSpecification

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj build set myproj.wpj default_romCompress

VxWorks
Command-Line Tools User’s Guide, 6.2

28

This command changes the current build specification of myproj.wpj to
default_romCompress.

To reset a project’s current build specification to its default, type the following:

vxprj build reset [projectFile]

The set and reset commands update a project’s makefile as well as its .wpj file.

Adding and Changing Build Rules

The commands documented below edit project makefiles and .wpj files.

To add a build rule to a project’s current build specification, type the following:

vxprj buildrule add [projectFile] buildRule value

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj buildrule add default_new "$(CC) $(CFLAGS) ./prjConfig.c -o $@"

This command creates a build rule (if it doesn’t already exist) called default_new,
adds it to the current build specification, and sets its value to
$(CC) $(CFLAGS) ./prjConfig.c -o $@.

To create or edit a build rule without including it in the project’s current build
specification, type the following:

vxprj buildrule set [projectFile] buildRule value

Rules created with set are added to the list of available build rules for the current
build specification.

To remove a build rule from a project, type the following:

vxprj buildrule remove [projectFile] buildRule

To set the default build rule for the current build specification, type the following:

vxprj buildrule [projectFile] buildRule

For example:

% vxprj buildrule default_new

4 Building Kernel and Application Projects
4.3 Building Projects with cmpScriptLib

29

4

4.3 Building Projects with cmpScriptLib

The cmpScriptLib Tcl library includes routines that build and manipulate kernel
configuration projects. To access cmpScriptLib, you need a correctly configured
Tcl shell. Start by entering the following:

% tclsh
package require OsConfig

From the new command prompt, you can build a project by typing the following:

cmpProjOpen projectFile
cmpBuild

For example:

cmpProjOpen /Apps/SomeProject.wpj
cmpBuild

This command builds the project defined in SomeProject.wpj. If you specify a
Windows directory path with projectFile, be sure to use double backslashes (\\).

cmpScriptLib contains several routines that allow you to view and set build rules
and build specifications, including cmpBuildRule, cmpBuildRuleSet,
cmpBuildSpecSet, cmpBuildRuleListGet, cmpBuildRuleAdd,
cmpBuildRuleRemove, and cmpBuildRuleDefault. Information about these
routines is available in the reference entry for cmpScriptLib. For additional
information about cmpScriptLib, see also 3.3 Using cmpScriptLib and Other
Libraries, p.21.

4.4 Other VxWorks Project Types

Real-time process (RTP), shared library, downloadable kernel module, and file
system projects are most easily created and built from the IDE. For information
about managing these projects with the IDE, see the VxWorks User’s Guide. For
detailed information about RTPs, shared libraries, and file systems, see the
VxWorks Application Programmer’s Guide. For information about downloadable
kernel modules—essentially object (.o) files that can be dynamically linked to a
VxWorks kernel—see the VxWorks Kernel Programmer’s Guide.

VxWorks
Command-Line Tools User’s Guide, 6.2

30

4.5 Calling make Directly

The recommended way of building kernel configuration projects is to use vxprj,
cmpScriptLib, or the IDE. VxWorks projects of other types can be built from the
IDE. If you decide to build a project by invoking the make utility directly, and
especially if you edit the makefile, you should discard any generated project (.wpj
or .wrproject) files and no longer use the Workbench project management tools.

The wrenv environment utility automatically configures the correct version of
make, and Workbench-generated makefiles contain information about build tools,
target CPUs, and compiler options. Hence you should be able to build a project
created by vxprj, cmpScriptLib, or the IDE simply by moving to the project’s
parent directory and entering make from the command prompt. If the project is set
up to support multiple compilers or target CPUs, you may need to specify values
for make variables on the command line; for example:

% make TOOL=diab

On Windows, the make utility, as configured by wrenv, executes the Z shell (zsh,
installed with the Workbench tools as sh.exe). On UNIX, the make utility executes
whatever shell program is invoked by the command sh.

For complete information about make, see the GNU Make manual.

4.6 RTP Applications and Libraries

To build a user-mode (RTP) application or library from the command line, you can
invoke the make utility directly. Wind River supplies a general build model
implemented by a series of make rules, with standard make variables that control
aspects of the build process such as target CPU and toolkit.

NOTE: Your compiler installation may include a copy of dmake, an alternative
open-source make utility. This make utility is used only for building libraries
shipped with the standalone Wind River Compiler toolkit. VxWorks projects,
whether compiled with GCC or the Wind River Compiler, should be managed
with make.

4 Building Kernel and Application Projects
4.6 RTP Applications and Libraries

31

4

For example, the following command could be used to build an application like the
helloworld RTP sample included with Workbench:

% make CPU=CPU_Name TOOL=diab

This command builds helloworld for PowerPC targets, using the Wind River
(Diab) compiler. For more information about CPU and TOOL, see the VxWorks
Architecture Supplement.

RTP Applications

The makefile for the helloworld RTP application looks like this:

This file contains make rules for building the hello world RTP
EXE = helloworld.vxe
OBJS = helloworld.o
include $(WIND_USR)/make/rules.rtp

This makefile is simple because most of the make rules are included by indirection
from rules.rtp and other files referenced in rules.rtp. When make processes this
file, helloworld.c is compiled to helloworld.o, which is then linked with other
VxWorks user-mode (RTP) libraries to produce the application executable
helloworld.vxe.

RTP Libraries

The makefile for a static archive looks like this:

This file contains make rules for building the foobar library
LIB_BASE_NAME = foobar
OBJS = foo1.o foo2.o \

bar1.o bar2.o
include $(WIND_USR)/make/rules.library

This makefile could be used to build a library called libfoobar.a. It includes rules
defined in rules.library.

Makefile and Directory Structure

Typically, each application or library project is stored in a separate directory with
its own makefile. For examples, see target/usr/apps/samples/ under the VxWorks
installation directory.

rules.rtp, rules.library, and other make rule files (some of them host-specific) are
found in target/usr/make/ under the VxWorks installation directory. Except for the

VxWorks
Command-Line Tools User’s Guide, 6.2

32

LOCAL_CLEAN and LOCAL_RCLEAN variables (see 4.6.2 Make Variables, p.32),
rules.rtp or rules.library should usually be included as the last line of the makefile;
user-defined build rules must precede rules.rtp or rules.library.

4.6.1 Rebuilding VxWorks RTP (User-Mode) Libraries

The VxWorks user-mode source base, which provides supporting routines for
applications, is installed under target/usr/src/. These files can be used to build both
statically linked (.a) and dynamically linked (.so) libraries by setting the value of
LIB_FORMAT (see 4.6.2 Make Variables, p.32). From the target/usr/src/ directory,
you can rebuild the user-mode libraries by typing the following:

% make CPU=target TOOL=toolkit

Unless overridden with SUBDIRS or EXCLUDE_SUBDIRS (see 4.6.2 Make Variables,
p.32), the build system descends recursively through the directory tree, executing
make in each subdirectory.

When RTP libraries are compiled, the preprocessor macro __RTP__ is defined and
the preprocessor macro _WRS_KERNEL is not defined.

4.6.2 Make Variables

The VxWorks build system utilizes a number of make variables (also called
macros), some of which are described below. The files in target/usr/make/ include
additional variables, but only the ones documented here are intended for
redefinition by the user.

ADDED_C++FLAGS
Additional C++ compiler options.

ADDED_CFLAGS
Additional C compiler options.

ADDED_CLEAN_LIBS
A list of libraries (static and dynamic) deleted when make clean is executed in
the application directory. See LOCAL_CLEAN and LOCAL_RCLEAN below.

ADDED_DYN_EXE_FLAGS
Additional compiler flags specific to the generation of dynamic executables.

ADDED_LIBS
A list of static libraries (in addition to the standard VxWorks RTP libraries)
linked into the application.

4 Building Kernel and Application Projects
4.6 RTP Applications and Libraries

33

4

ADDED_LIB_DEPS
Dependencies between the application and the application’s static libraries
(with the += operator). For static linkage, this variable forces a rebuild of the
application if the static library has been changed since the last build.

ADDED_SHARED_LIBS
A list of shared libraries dynamically linked to the application. Items in the list
are prefixed with lib and have the .so file extension added. For example,
ADDED_SHARED_LIBS="foo bar" causes the build system to try to link
libfoo.so and libbar.so.

CPU
The target instruction-set architecture to compile for. This is not necessarily the
exact microprocessor model.

DOC_FILES
A list of C and C++ source files that are specially parsed during the build to
generate online API documentation. Should be an empty list if there are no
files to generate documentation from.

EXCLUDE_SUBDIRS
A list of subdirectories excluded from the build. Generally, when make is
executed, the system tries to build the default target for every subdirectory of
the current directory that has a makefile in it. Use EXCLUDE_SUBDIRS to
override this behavior. See also SUBDIRS.

EXE
The output executable filename. Specify only one executable per makefile. Do
not include a directory path. See VXE_DIR.

EXE_FORMAT
The format of the output executable (static or dynamic). The default is static.

EXTRA_INCLUDE
Additional search paths for the include files. Uses the += operator.

LIBNAME
A non-default directory for the static library.

LIB_BASE_NAME
The name of the archive that objects built in the directory are collected into. For
example, LIB_BASE_NAME=foo causes the build system to create a static
library called libfoo.a or a dynamic library called libfoo.so. See LIB_FORMAT.
(Library builds only.)

VxWorks
Command-Line Tools User’s Guide, 6.2

34

LIB_DIR
A local make variable that can be used conveniently to identify where a library
is located (if it is not in the default location) in the ADDED_LIBS and
ADDED_LIB_DEPS lines without repeating the literal path information.

LIB_FORMAT
The type of library to build. Can be static, shared (dynamic), or both; defaults
to both. (Library builds only.)

LOCAL_CLEAN
Additional files deleted when make clean is executed. By default, the clean
target deletes files listed in OBJS. Use LOCAL_CLEAN to specify additional
files to be deleted. Must be defined after rules.rtp or rules.library.

LOCAL_RCLEAN
Additional files deleted when make rclean is executed. The rclean target
recursively descends the directory tree starting from the current directory,
executing make clean in every subdirectory; if SUBDIRS is defined, only
directories listed in SUBDIRS are affected; directories listed in
EXCLUDE_SUBDIRS are not affected. Use LOCAL_RCLEAN to specify
additional files in the current directory to be deleted. Must be defined after
rules.rtp or rules.library.

OBJ_DIR
The output subdirectory for object files.

OBJS
A list of object files built; should include object files to be linked into the final
executable. Each item must end with the .o extension. If you specify an object
file that does not have a corresponding source file (.c for C, .cpp for C++, or .s
for assembly), there must be a build rule that determines how the object file is
generated. Do not include a directory path. See OBJ_DIR and LIBDIRBASE.

SL_INSTALL_DIR
A non-default location for the library file. It is often useful to keep project work
outside of the installation directory.

SL_VERSION
A version number for a shared library. By default, the shared library version
number is one (libName.so.1), so this variable is not needed unless you want to
build an alternate version of the shared library.

SUBDIRS
A list of subdirectories of the current directory in which the build system looks
for a makefile and tries to build the default target. If SUBDIRS is not defined,

4 Building Kernel and Application Projects
4.6 RTP Applications and Libraries

35

4

the system tries to build the default target for every subdirectory of the current
directory that has a makefile in it. EXCLUDE_SUBDIRS overrides SUBDIRS.

TOOL
The compiler and toolkit used. The Wind River (Diab) and GCC (GNU)
compilers are supported. TOOL can also specify compilation options for
endianness or floating-point support.

VXE_DIR
The output subdirectory for executable files and shared libraries. Defaults to
target/usr/root/CPUtool/bin/ (executables) or target/usr/root/CPUtool/lib/
(shared libraries); for example, target/usr/root/PPC32diab/bin/.

For further information on these make variables, see the VxWorks Application
Programmer’s Guide: Applications and Processes.

For information on the supported values for the CPU and TOOL make variables,
see the VxWorks Architecture Supplement: Building Applications.

VxWorks
Command-Line Tools User’s Guide, 6.2

36

37

 5
Connecting to a Target

5.1 Introduction 37

5.2 Connecting to a Target Board 37

5.3 Using the VxWorks Simulator 38

5.1 Introduction

This chapter outlines procedures for running compiled VxWorks applications on
targets and simulators.

5.2 Connecting to a Target Board

Downloading VxWorks to a physical target involves the following steps:

1. Launch the Wind River registry:

■ On Windows, type wtxregd.
■ On UNIX, type wtxregd start.

VxWorks
Command-Line Tools User’s Guide, 6.2

38

The registry maintains a database of target servers, boards, ports, and other
items used by the development tools to communicate with targets. For more
information, see the wtxregd and wtxreg reference entries.

2. Connect the target to a serial terminal.

3. Switch on the target.

4. Edit the boot loader parameters to tell the boot loader the IP address of the
target and the location of the VxWorks image. See the VxWorks Kernel
Programmer’s Guide: Kernel for details.

5. Start the target server by typing the following:

% tgtsvr targetIPaddress -n target -c pathToVxWorksImage

The target server allows development tools, such as the host shell or debugger,
to communicate with a remote target. For more information, see the tgtsrv and
wtxConsole reference entries.

6. Start the host shell by typing the following:

% windsh targetServer

The host shell allows command-line interaction with a VxWorks target. For an
overview of the host shell, see Debugging Applications with the Host Shell, p.41.

7. From the host shell, you can load and run applications. For example:

% ld < filename.out
% rtpSp "filename.vxe"

For detailed information, see Host Shell Commands and Options, p.47.

5.3 Using the VxWorks Simulator

To run under the VxWorks Simulator, an application must be specially compiled.
For VxWorks images, the best way to do this is to set up and build a
simulator-enabled version of the project. This can be done with vxprj:

vxprj create simpc|solaris|linux diab|gnu [projectFile|directory]
vxprj build projectFile

For more information about these commands, see 3.2.1 Creating Kernel
Configuration Projects, p.12 and 4.2 Building Kernel Configuration Projects with vxprj,
p.26.

5 Connecting to a Target
5.3 Using the VxWorks Simulator

39

5

RTP applications that use the standard Wind River build model can be compiled
for the simulator by specifying an appropriate value for the CPU make variable:

cd projectDirectory
make CPU=SIMPENTIUM|SIMSPARCSOLARIS TOOL=diab|gnu

For more information, see 4.6 RTP Applications and Libraries, p.30.

To run the simulator, type the following:

vxsim [-f pathToVxWorksImage|filename.vxe] [otherOptions]

For more information about the simulator, see the Wind River VxWorks Simulator
User’s Guide.

VxWorks
Command-Line Tools User’s Guide, 6.2

40

41

 6
Debugging Applications

with the Host Shell

6.1 Introduction 41

6.2 Starting and Stopping the Host Shell 42

6.3 Switching Modes 42

6.4 Command Mode 42

6.5 C Interpreter 44

6.6 Tcl Mode 45

6.7 GDB Mode 45

6.1 Introduction

This chapter explains how to run and debug programs from the host shell. For a
list of host shell commands and options, see Host Shell Commands and Options, p.47
and the host shell reference pages: hostShell, cMode, cmdMode, gdbMode, and
rtpCmdMode.

You can use the host shell in four interactive modes: C interpreter, which executes
C-language expressions; Command (Cmd), a UNIX-style command interpreter; Tcl,
to access the WTX Tcl API and for scripting; and GDB, for debugging with GNU
Debugger commands.

In any mode, entering help displays a summary of available commands.

VxWorks
Command-Line Tools User’s Guide, 6.2

42

6.2 Starting and Stopping the Host Shell

To start the host shell, type the following:

windsh [options] targetServer

For example, to connect to a running simulator, type the following:

C:\> windsh vxsim0@hostname

You can run multiple host shells attached to the same target.

To terminate a host shell session—from any mode—type exit or quit, or press
Ctrl+D.

6.3 Switching Modes

By default, the host shell starts in C interpreter mode. To switch to another mode,
type the following:

■ cmd for command mode. The prompt changes to [vxWorks] #.

■ ? for Tcl mode. The prompt changes to tcl>.

■ gdb for GDB mode. The prompt changes to gdb>.

■ C to return to the C interpreter. The prompt changes to ->.

These commands can also be used to evaluate a statement native to another
interpreter. For example, to execute a C statement from Command mode, you
could type the following:

[vxWorks]# C test = malloc(100)

6.4 Command Mode

The command interpreter uses a mixture of GDB and UNIX syntax. To use the
command interpreter, type the following:

command [subcommand [subcommand ...]] [options] [arguments] [;]

6 Debugging Applications with the Host Shell
6.4 Command Mode

43

6

Spaces within an argument must be preceded by a backslash (\) unless the entire
argument is surrounded by single or double quotation marks.

For example:

List the contents of a directory.
[vxWorks]# ls -l /folk/usr

Create an alias.
[vxWorks]# alias ls "ls -l"

Summarize task TCBs.
[vxWorks]# task

Suspend a task, then resume it.
[vxWorks]# task suspend t1
[vxWorks]# task resume t1

Set a breakpoint for a task at a specified address.
[vxWorks]# bp -t t1 0x12345678

Set a breakpoint on a function.
[vxWorks]# bp &printf

Show the address of someInt.
[vxWorks]# echo &someInt

Step over a task from a breakpoint.
[vxWorks]# task stepover t1

Continue a task.
[vxWorks]# task continue t1

Delete a task.
[vxWorks]# task delete t1

Run an RTP application.
[vxWorks]# /folk/user/TMP/helloworld.vxe

Run an RTP application, passing parameters to the executable.
[vxWorks]# cal.vxe -j 2002

Run an RTP application, passing options to the executable and to the RTP
loader (in this case, setting the stack size to 8K).
[vxWorks]# rtp exec -u 8096 /folk/user/TMP/foo.vxe -q

List RTPs or show brief information about a specific RTP.
[vxWorks]# rtp [rtpID]

Show details about an RTP.
[vxWorks]# rtp info [rtpID]

Stop an RTP, then continue it.
[vxWorks]# rtp stop 0x43210
[vxWorks]# rtp continue 0x43210

VxWorks
Command-Line Tools User’s Guide, 6.2

44

6.5 C Interpreter

The C interpreter, in addition to executing most C-language expressions, provides
a variety of native commands for managing tasks and programs. It does not
provide access to processes; use command mode to debug processes (RTPs).

Sometimes a routine in your application code will have the same name as a host
shell command. If such a conflict arises, you can direct the C interpreter to execute
the target routine, rather than the host shell command, by prefixing the routine
name with @, as shown in the final example below.

For example:

Execute C statements.
-> test = malloc(100); test[0] = 10; test[1] = test[0] + 2
-> printf("Hello!")

Download and dynamically link a new module.
-> ld < /usr/apps/someProject/file1.o

Create new symbols.
-> MyInt = 100; MyName = "Bob"

Show system information (task summary).
-> i

Show information about a specific task.
-> ti(s1u0)

Suspend a task, then resume it.
-> ts(s1u0)
-> tr(s1u0)

Show stack trace.
-> tt

Show current working directory; list contents of directory.
-> pwd
-> ls

Set a breakpoint.
-> b(0x12345678)

Step program to the next routine.
-> s

Call a VxWorks function; create a new symbol (my_fd).
-> my_fd = open ("file", 0, 0)

6 Debugging Applications with the Host Shell
6.6 Tcl Mode

45

6

Call a function from your application.
-> someFunction (1,2,3)

Call an application function that has the same name as a shell command.
-> @i()

6.6 Tcl Mode

The Tcl interpreter provides access to the WTX Tcl API., which allows you to write
complex scripts for testing an debugging. For a complete listing of WTX Tcl API
commands, see the wtxtcl reference entries.

6.7 GDB Mode

In GDB mode, the host shell interprets GNU Debugger commands.

For example:

Set a breakpoint on foo.
gdb> break foo

Set a breakpoint on line 100 of main.c.
gdb> break main.c:100

Show breakpoints.
gdb> info breakpoints

Delete a breakpoint.
gdb> delete 4

Run a program.
gdb> exec-file main.out
gdb> run

Step through a program.
gdb> step

Continue.
gdb> c

VxWorks
Command-Line Tools User’s Guide, 6.2

46

Display back trace of ten frames.
gdb> bt 10

Display variables.
gdb> p var

Disconnect from the target.
gdb> disconnect

Quit GDB.
gdb> quit

47

 A
 Host Shell Commands

and Options

A.1 Introduction 47

A.2 Host Shell Basics 48

A.3 Using the Command Interpreter 54

A.4 Using the C Interpreter 66

A.5 Using the Tcl Interpreter 72

A.6 Using the GDB Interpreter 73

A.7 Using the Built-in Line Editor 79

A.8 Running the Host Shell in Batch Mode 85

A.1 Introduction

This appendix provides details about operating the host shell. For more
information, see the host shell reference pages: hostShell, cMode, cmdMode,
gdbMode, and rtpCmdMode.

The host shell is a host-resident command shell that allows you to download
application modules, invoke operating-system and application subroutines, and
monitor and debug applications. A target-resident version of the shell (called the
kernel shell) is also available; see the VxWorks Kernel Programmer’s Guide: Target
Tools.

VxWorks
Command-Line Tools User’s Guide, 6.2

48

Host shell operation involves a target server, which handles communication with
the remote target, dispatching function calls and returning their results; and a
target agent, a small monitor program that mediates access to target memory and
other facilities. The target agent is the only component that runs on the target. The
symbol table, managed by the target server, resides on the host, although the
addresses it contains refer to the target system.

A.2 Host Shell Basics

You can use the host shell in one of four modes:

■ C interpreter, which executes C-language expressions and allows prototyping
and debugging in kernel space. The host shell starts in this mode by default.
(See A.4 Using the C Interpreter, p.66.)

■ Command (Cmd), a UNIX-style command interpreter for debugging and
monitoring a system, including RTPs. (See A.3 Using the Command Interpreter,
p.54.)

■ Tcl, to access the WTX TCL API and for scripting. (See A.5 Using the Tcl
Interpreter, p.72.)

■ GDB, for debugging a target using GDB commands. (See A.6 Using the GDB
Interpreter, p.73.)

A.2.1 Starting the Host Shell

To start the host shell, type the following:

windsh [options] targetServer

Table A-1 summarizes startup options. For example, to connect to a running
simulator, type the following:

C:\> windsh vxsim0@hostname

NOTE: When you start the host shell, a second shell window appears, running the
Debug server. You can minimize this second window to reclaim screen space, but
do not close it.

A Host Shell Commands and Options
A.2 Host Shell Basics

49

A

You may run as many different host shells attached to the same target as you wish.
The output from a function called in a particular shell appears in the window from
which it was called, unless you change the shell defaults using shConfig (see
A.2.3 Setting Shell Environment Variables, p.50).

Host Shell Startup Options

Table A-1 Host Shell Startup Options

Option Description

-n, -noinit Do not read home Tcl initialization file.

-T, -Tclmode Start in Tcl mode.

-m[ode] Indicates mode to start in: C (the default), Tcl
(Tcl|tcl|TCL), GDB (Gdb|gdb|GDB), or Cmd
(Cmd|cmd|CMD).

-v, -version Display host shell version.

-h, -help Print help.

-p, -poll Sets event poll interval (msec, default=200).

-e, -execute Executes Tcl expression after initialization.

-c, -command Executes expression and exits shell (batch mode).

-r, -root mappings Root pathname mappings.

-ds[DFW server Session] Debugger Server session to use.

-dp[DFW server Port] Debugger Server port to use.

-host Retrieves target server information from host’s
registry.

-s, -startup Specifies the startup file of shell commands to execute.

-q, -quiet Turns off echo of script commands as they are
executed.

-dt target DFW target definition name.

VxWorks
Command-Line Tools User’s Guide, 6.2

50

A.2.2 Switching Interpreters

At times you may want to switch from one interpreter to another. From a prompt,
type these special commands and then press Enter:

■ cmd to switch to the command interpreter. The prompt changes to
[vxWorks] #.

■ C to switch to the C interpreter. The prompt changes to ->.

■ ? to switch to the Tcl interpreter. The prompt changes to tcl>.

■ gdb to switch to the GDB interpreter. The prompt changes to gdb>.

These commands can also be used to evaluate a statement native to another
interpreter. Simply precede the command you want to execute with the
appropriate interpreter’s special command.

For example, to evaluate a C interpreter command from within the command
interpreter, type the following:

[vxWorks]# C test = malloc(100); test[0] = 10; test[1] = test[0] + 2

A.2.3 Setting Shell Environment Variables

The host shell has a set of environment variables that configure different aspects of
the shell’s interaction with the target and with the user. These environment
variables can be displayed and modified using the Tcl routine shConfig. Table A-2
provides a list of the host shell’s environment variables and their significance.

Since shConfig is a Tcl routine, it should be called from within the shell’s Tcl
interpreter; it can also be called from within another interpreter if you precede the
shConfig command with a question mark (?shConfig variable option).

Table A-2 Host Shell Environment Variables

Variable Result

RTP_CREATE_STOP [on|off] When RTP support is configured in the
system, this option indicates whether RTPs
launched via the host shell (using the host
shell’s command interpreter) should be
launched in the stopped or running state.

A Host Shell Commands and Options
A.2 Host Shell Basics

51

A

RTP_CREATE_ATTACH [on|off] When RTP support is configured in the
system, this option indicates whether the
shell should automatically attach to any
RTPs launched from the host shell (using the
host shell’s command interpreter).

VXE_PATH . When RTP support is configured in the
system, this option indicates the path in
which the host shell should search for RTPs
to launch. If this is set to “.” the full
pathname of an RTP should be supplied to
the command to launch an RTP.

ROOT_PATH_MAPPING This variable indicates how host and target
paths should be mapped to the host file
system on which the DFW server used by
the host shell is running. If this value is not
set, a direct path mapping is assumed (for
example, a pathname given by /folk/user is
searched; no translation to another path is
performed).

LINE_LENGTH This configuration variable indicates the
maximum number of characters permitted
in one line of the host shell’s window.

STRING_FREE [manual|automatic] .This configuration variable indicates
whether strings allocated on the target by
the host shell should be freed automatically
by the shell, or whether they should be left
for the user to free manually using the C
interpreter API strFree().

Table A-2 Host Shell Environment Variables (cont’d)

Variable Result

VxWorks
Command-Line Tools User’s Guide, 6.2

52

SEARCH_ALL_SYMBOLS [on|off] This variable indicates whether symbol
searches should be confined to global
symbols or should search all symbols. If
SEARCH_ALL_SYMBOLS is set to on, any
request for a symbol searches the entire
symbol table contents. This is equivalent to a
symbol search performed on a target server
launched with the -A option. Note that if the
SEARCH_ALL_SYMBOLS flag is set to on,
there is a considerable performance impact
on commands performing symbol
manipulation.

INTERPRETER [C|Tcl|Cmd|Gdb] This variable indicates the host shell’s
current interpreter mode and permits the
user to switch from one mode to another.

SH_GET_TASK_IO Sets the I/O redirection mode for called
functions. The default is on, which redirects
input and output of called functions to
WindSh. To have input and output of called
functions appear in the target console, set
SH_GET_TASK_IO to off.

LD_CALL_XTORS Sets the C++ strategy related to constructors
and destructors. The default is “target”,
which causes WindSh to use the value set on
the target using cplusXtorSet(). If
LD_CALL_XTORS is set to on, the C++
strategy is set to automatic (for the current
WindSh only). Off sets the C++ strategy to
manual for the current shell.

LD_SEND_MODULES Sets the load mode. The default on causes
modules to be transferred to the target
server. This means that any module WindSh
can see can be loaded. If
LD_SEND_MODULES if off, the target server
must be able to see the module to load it.

Table A-2 Host Shell Environment Variables (cont’d)

Variable Result

A Host Shell Commands and Options
A.2 Host Shell Basics

53

A

For example, to switch from vi mode to emacs mode when using the C interpreter,
type the following:

-> ?shConfig LINE_EDIT_MODE emacs

When in command interpreter mode, you can use the commands set config and
show config to set and display the environment variables listed in Table A-2.

LD_PATH Sets the search path for modules using the
separator “;”. When a ld() command is
issued, WindSh first searches the current
directory and loads the module if it finds it.
If not, WindSh searches the directory path
for the module.

LD_COMMON_MATCH_ALL Sets the loader behavior for common
symbols. If it is set to on, the loader tries to
match a common symbol with an existing
one. If a symbol with the same name is
already defined, the loader take its address.
Otherwise, the loader creates a new entry. If
set to off, the loader does not try to find an
existing symbol. It creates an entry for each
common symbol.

DSM_HEX_MOD Sets the disassembling “symbolic + offset”
mode. When set to off the “symbolic +
offset” address representation is turned on
and addresses inside the disassembled
instructions are given in terms of “symbol
name + offset.” When set to on these
addresses are given in hexadecimal.

LINE_EDIT_MODE Sets the line edit mode to use. Set to emacs or
vi. Default is vi.

Table A-2 Host Shell Environment Variables (cont’d)

Variable Result

VxWorks
Command-Line Tools User’s Guide, 6.2

54

A.2.4 Stopping the Host Shell

Regardless of how you start it, you can terminate a host shell session by typing exit
or quit at the prompt or pressing Ctrl+D.

A.3 Using the Command Interpreter

The command interpreter is command-oriented and does not understand C
language syntax. (For C syntax, use the C interpreter as described in A.4 Using the
C Interpreter, p.66.)

A command name is composed of one or more strings followed by options flags
and parameters. The command interpreter syntax is a mix of GDB and UNIX
syntax.

The syntax of a command is as follows:

command [subcommand [... subcommand]] [options] [arguments] [;]

command and subcommand are alphanumeric strings that do not contain spaces.
arguments can be any string.

For example:

[vxWorks]# ls -l /folk/user
[vxWorks]# task delete t1
[vxWorks]# bp -t t1 0x12345678

The options and arguments strings may be processed differently by each command
and so can follow any format. Most of the commands follow the UNIX standard.
In that case, each argument and each option are separated by at least one space.

An option is composed of the dash character (-) plus one character (-o for example).
Several options can be gathered in the same string (-oats is identical to -o -a -t -s).
An option may have an extra argument (-f filename). The -- option is a special
option that indicates the end of the options string.

Arguments are separated by spaces. Therefore, if an argument contains a space,
the space has to be escaped by a backslash (“\”) character or surrounded by single
or double quotes. For example:

[vxWorks]# ls -l "/folk/user with space characters"
[vxWorks]# ls -l /folk/user\ with\ space\ characters

A Host Shell Commands and Options
A.3 Using the Command Interpreter

55

A

A.3.1 General Host Shell Commands

Table A-3 summarizes general host shell commands.

Table A-3 General Command Interpreter Commands

Command Description

alias Adds an alias or displays list of aliases.

bp Displays, sets, or unsets a breakpoint.

cat Concatenates and displays files.

cd Changes current directory.

expr Evaluates an expression.

help Displays the list of shell commands.

ls Lists the files in a directory.

more Browses and pages through a text file.

print errno Displays the symbol value of an errno.

pwd Displays the current working directory.

quit Shuts down the shell.

reboot Reboots the system.

string free Frees a string allocated by the shell on the target.

unalias Removes an alias.

version Displays VxWorks version information.

VxWorks
Command-Line Tools User’s Guide, 6.2

56

A.3.2 Displaying Target Agent Information

Table A-4 lists the commands related to the target agent.

A.3.3 Working with Memory

Table A-5 shows the commands related to memory.

Table A-4 Command Interpreter Target Agent Commands

Command Description

help agent Displays a list of shell commands related to the target agent.

agent info Displays the agent mode: system or task.

agent status Displays the system context status: suspended or running. This
command can be completed successfully only if the agent is
running in system (external) mode.

agent system Sets the agent to system (external) mode then suspends the system,
halting all tasks. When the agent is in external mode, certain
commands (bp, task step, task continue) work with the system
context instead of a particular task context.

agent task Resets the agent to tasking mode and resumes the system.

Table A-5 Command Interpreter Memory Commands

Command Description

help memory Lists shell commands related to memory.

mem dump Displays memory.

mem modify Modifies memory values.

mem info Displays memory information.

mem list Disassembles and displays a specified number of instructions.

A Host Shell Commands and Options
A.3 Using the Command Interpreter

57

A

A.3.4 Displaying Object Information

Table A-6 shows commands that display information about objects.

A.3.5 Working with Symbols

Table A-7 lists commands for displaying and setting values of symbols.

Accessing a Symbol’s Contents and Address

The host shell command interpreter is a string-oriented interpreter, but a user may
want to distinguish between symbol names, regular strings, and numerical values.

When a symbol name is passed as an argument to a command, the user may want
to specify either the symbol address (for example, to set a hardware breakpoint on
that address) or the symbol value (to display it).

Table A-6 Command Interpreter Object Commands

Command Description

help objects Lists shell commands related to objects.

object info Displays information about one or more specified objects.

object class Shows information about a class of objects.

Table A-7 Command Interpreter Symbol Commands

Command Description

help symbols Lists shell commands related to symbols.

echo Displays a line of text or prints a symbol value.

printf Writes formatted output.

set or set symbol Sets the value of a symbol.

lookup Looks up a symbol.

VxWorks
Command-Line Tools User’s Guide, 6.2

58

To do this, a symbol should be preceded by the character & to access the symbol’s
address, and $ to access a symbol’s contents. Any commands that specify a symbol
should now also specify the access type for that symbol. For example:

[vxWorks]# task spawn &printf %c $toto.r

In this case, the command interpreter sends the address of the text symbol printf
to the task spawn command. It accesses the contents of the data symbol toto and,
due to the .r suffix, it accesses the data symbol as a character.

The commands printf and echo are available in the shell for easy display of symbol
values.

Symbol Value Access

When specifying that a symbol is of a particular numerical value type, use the
following:

$symName[.type]

The special characters accepted for type are as follows:

r = chaR
h = sHort
i = Integer (default)
l = Long

ll = Long Long
f = Float

d = Double

For example, if the value of the symbol name value is 0x10, type the following:

[vxWorks]# echo $value
0x10

But:

[vxWorks]# echo value
value

By default, the command interpreter considers a numerical value to be a 32-bit
integer. If a numerical string contains a “.” character, or the E or e characters (such
as 2.0, 2.1e1, or 3.5E2), the command interpreter considers the numerical value to
be a double value.

Symbol Address Access

When specifying that a symbol should be replaced by a string representing the
address of the symbol, precede the symbol name by a & character.

A Host Shell Commands and Options
A.3 Using the Command Interpreter

59

A

For example, if the address of the symbol name value is 0x12345678, type the
following:

[vxWorks]# echo &value
0x12345678

Special Consideration of Text Symbols

The “value” of a text symbol is meaningless, but the symbol address of a text
symbol is the address of the function. So to specify the address of a function as a
command argument, use a & character.

For example, to set a breakpoint on the printf() function, type the following:

[vxWorks]# bp &printf

A.3.6 Displaying, Controlling, and Stepping Through Tasks

Table A-8 displays commands for working with tasks.

Table A-8 Command Interpreter Task Commands

Command Description

help tasks Lists the shell commands related to working with tasks.

task Displays a summary of each tasks’s TCB.

task info Displays complete information from a task’s TCB.

task spawn Spawns a task with default parameters.

task stack Displays a summary of each tasks’s stack usage.

task delete Deletes one or more tasks.

task default Sets or displays the default task.

task trace Displays a stack trace of a task.

task regs Sets task register value.

show task regs Displays task register values.

task suspend Suspends a task or tasks.

task resume Resumes a task or tasks.

VxWorks
Command-Line Tools User’s Guide, 6.2

60

A.3.7 Setting Shell Context Information

Table A-9 displays commands for displaying and setting context information.

task hooks Displays task hook functions.

task stepover Single-steps a task or tasks.

task stepover Single steps, but steps over a subroutine.

task continue Continues from a breakpoint.

task stop Stops a task.

Table A-8 Command Interpreter Task Commands (cont’d)

Command Description

Table A-9 Command Interpreter Shell Context Commands

Command Description

help set Lists shell commands related to setting context information.

set or
set symbol

Sets the value of an existing symbol. If the symbol does not
exist, and if the current working context is the kernel, a new
symbol is created and registered in the kernel symbol table.

set bootline Changes the boot line used in the boot ROMs.

set config Sets or displays shell configuration variables.

set cwc Sets the current working context of the shell session.

set history Sets the size of shell history. If no argument is specified,
displays shell history.

set prompt Changes the shell prompt to the string specified. The
following special characters are accepted:

%/ : current path
%n : current user
%m : target server name
%% : display % character
%c : current RTP name

A Host Shell Commands and Options
A.3 Using the Command Interpreter

61

A

A.3.8 Displaying System Status

Table A-10 lists commands for showing system status information.

A.3.9 Using and Modifying Aliases

The command interpreter accepts aliases to speed up access to shell commands.
Table A-11 lists the aliases that already exist; they can be modified, and you can
add new aliases. Aliases are visible from all shell sessions.

unset config Removes a shell configuration variable from the current
shell session.

Table A-9 Command Interpreter Shell Context Commands (cont’d)

Command Description

Table A-10 Command Interpreter System Status Commands

Command Description

show bootline Displays the current boot line of the kernel.

show devices Displays all devices known to the I/O system.

show drivers Displays all system drivers in the driver list.

show fds Displays all opened file descriptors in the system.

show history Displays the history events of the current interpreter.

show lasterror Displays the last error value set by a command.

Table A-11 Command Interpreter Aliases

Alias Definition

alias List existing aliases. Add a new alias by typing alias
aliasname “command”. For example, alias ll "ls -l".

attach rtp attach

b bp

VxWorks
Command-Line Tools User’s Guide, 6.2

62

bd bp -u

bdall bp -u #*

bootChange set bootline

c task continue

checkStack task stack

cret task continue -r

d mem dump

detach rtp detach

devs show devices

emacs set config LINE_EDIT_MODE="emacs"

h show history

i task

jobs rtp attach

kill rtp detach

l mem list

lkAddr lookup -a

lkup lookup

m mem modify

memShow mem info

ps rtp

rtpc rtp continue

rtpd rtp delete

rtpi rtp task

Table A-11 Command Interpreter Aliases (cont’d)

Alias Definition

A Host Shell Commands and Options
A.3 Using the Command Interpreter

63

A

A.3.10 Launching RTPs

From the command interpreter, type the RTP pathname as a regular command,
adding any command arguments after the RTP pathname (as in a UNIX shell).

[vxWorks]# /folk/user/TMP/helloworld.vxe
Launching process '/folk/user/TMP/helloworld.vxe' ...
Process '/folk/user/TMP/helloworld.vxe' (process Id = 0x471630) launched.
[vxWorks]# rtp

NAME ID STATUS ENTRY ADDR SIZE TASK CNT
------------ ---------- ----------- ---------- ---------- --------

[vxWorks]# /folk/user/TMP/cal 12 2004
Launching process '/folk/user/TMP/cal' ...
December 2004
S M Tu W Th F S

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Process '/folk/user/TMP/cal' (process Id = 0x2fdfb0) launched.

rtps rtp stop

run rtp exec

s task step

so task stepover

td task delete

ti task info

tr task resume

ts task suspend

tsp task spawn

tt task trace

vi set config LINE_EDIT_MODE="vi"

Table A-11 Command Interpreter Aliases (cont’d)

Alias Definition

VxWorks
Command-Line Tools User’s Guide, 6.2

64

Redirecting Output to the Host Shell

To launch an RTP in the foreground, simply launch it as usual:

[vxWorks]# rtp exec myRTP.exe

To launch an RTP in the background but redirect its output to the host shell,
include the -i option:

[vxWorks]# rtp exec -i myRTP.exe

To move the RTP to the background and stop it, press Ctrl+W. To resume an RTP
in the background that is stopped, use the command rtp background.

To move an RTP to the foreground, use the command rtp foreground.

To kill the RTP, press Ctrl+C.

To redirect output for all processes to the host shell, use the Tcl function vioSet as
shown below:

proc vioSet {} {
#Set stdin, stdout, and stderr to /vio/0 if not already in use
puts stdout "set stdin stdout stderr here (y/n)?"
if { [shParse {tstz = open ("/vio/0",2,0)}] != -1 } {

shParse {vf0 = tstz};
shParse {ioGlobalStdSet (0,vf0)} ;
shParse {ioGlobalStdSet (1,vf0)} ;
shParse {ioGlobalStdSet (2,vf0)} ;
shParse {logFdSet (vf0);}
shParse {printf ("Std I/O set here!

} else {
shParse {printf ("Std I/O unchanged.

}
}

Monitoring and Debugging RTPs

Table A-12 displays the commands related to RTPs.

Table A-12 Command Interpreter RTP Commands

Command Description

help RTP Displays a list of the shell commands related to RTPs.

help rtp Displays shell commands related to RTPs, with synopses.

A Host Shell Commands and Options
A.3 Using the Command Interpreter

65

A

Setting Breakpoints

The bp command has been designed to set breakpoint in the kernel, in a RTP, for
any task, for a particular task or a particular context. A breakpoint number is
assigned to each breakpoint, which can be used to remove that breakpoint.

bp Display, set or unset a breakpoint
bp [-p <rtpIdNameNumber>] [-t <taskId>] [[-u {<#bp number>
| <bp address>} ...] | [-n <count>] [-h <type>] [-q] [-a]
[expr]]
This command is used to set or unset (if the option -u is
specified) a breakpoint. The breakpoint is a hardware
breakpoint if the option -h is specified. Without any
arguments, this command displays the breakpoints currently
set.
The special breakpoint number '#*' or breakpoint address
'*' is used to unset all the breakpoints.
-a : stop all tasks in a context,
-n : number of passes before hit,
-h : specify a hardware breakpoint type value,
-p : breakpoint applies to specify RTP,

rtp Displays a list of processes.

rtp stop Stops a process.

rtp continue Continues a process.

rtp delete Deletes a process (or list of processes).

rtp info Displays process information.

rtp exec Executes a process.

rtp attach Attaches the shell session to a process.

rtp detach Detaches the shell session from a process.

set cwc Sets the current working context of the shell session.

rtp task Lists tasks running within a particular RTP.

rtp foreground Brings the current or specified process to the shell foreground.

rtp background Runs the current or specified process in the shell background.

Table A-12 Command Interpreter RTP Commands (cont’d)

Command Description

VxWorks
Command-Line Tools User’s Guide, 6.2

66

-q : no notification when the breakpoint is hit,
-t : breakpoint applies to specify task,
-u : unset breakpoint

Breakpoints can be set in a memory context only if the current working memory
context is set to that memory context.

A.4 Using the C Interpreter

The host shell running in C interpreter mode interprets and executes almost all
C-language expressions and allows prototyping and debugging in kernel space (it
does not provide access to processes; use the command interpreter mode described
on page 54 to debug processes and RTPs).

Some of the commands (or routines) that you can execute from the shell are built
into the host shell, rather than running as function calls on the target. These
commands parallel interactive utilities that can be linked into VxWorks itself. By
using the host shell commands, you minimize the impact on both target memory
and performance.

A.4.1 Managing Tasks

Table A-13 summarizes the commands that manage tasks.

Table A-13 C Interpreter Task Management Commands

Command Description

sp() Spawns a task with default parameters.

sps() Spawns a task, but leaves it suspended.

tr() Resumes a suspended task.

ts() Suspends a task.

td() Deletes a task.

period() Spawns a task to call a function periodically.

A Host Shell Commands and Options
A.4 Using the C Interpreter

67

A

The repeat() and period() commands spawn tasks whose entry points are
_repeatHost and _periodHost. The shell downloads these support routines when
you call repeat() or period(). These tasks may be controlled like any other tasks on
the target; for example, you can suspend or delete them with ts() or td()
respectively.

Table A-14 summarizes the commands that report task information.

repeat() Spawns a task to call a function repeatedly.

taskIdDefault() Sets or reports the default (current) task ID.

Table A-13 C Interpreter Task Management Commands (cont’d)

Command Description

Table A-14 C Interpreter Task Information Reporting Commands

Command Description

i() Displays system information. This command gives a snapshot
of what tasks are in the system, and some information about
each of them, such as state, PC, SP, and TCB address. To save
memory, this command queries the target repeatedly; thus, it
may occasionally give an inconsistent snapshot.

iStrict() Displays the same information as i(), but queries target system
information only once. At the expense of consuming more
intermediate memory, this guarantees an accurate snapshot.

ti() Displays task information. This command gives all the
information contained in a task’s TCB. This includes everything
shown for that task by an i() command, plus all the task’s
registers, and the links in the TCB chain. If task is 0 (or the
argument is omitted), the current task is reported on.

w() Prints a summary of each task’s pending information, task by
task. This routine calls taskWaitShow() in quiet mode on all
tasks in the system, or on a specified task if the argument is
given.

tw() Prints information about the object the given task is pending on.
This routine calls taskWaitShow() on the given task in verbose
mode.

VxWorks
Command-Line Tools User’s Guide, 6.2

68

The i() command is commonly used to get a quick report on target activity. If
nothing seems to be happening, i() is often a good place to start investigating. To
display summary information about all running tasks, type the following:

-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY

--------- ----------- -------- --- -------- ------- -------- ------- -----
tExcTask _excTask 3ad290 0 PEND 4df10 3ad0c0 0 0
tLogTask _logTask 3aa918 0 PEND 4df10 3aa748 0 0
tWdbTask 0x41288 3870f0 3 READY 23ff4 386d78 3d0004 0
tNetTask _netTask 3a59c0 50 READY 24200 3a5730 0 0
tFtpdTask _ftpdTask 3a2c18 55 PEND 23b28 3a2938 0 0
value = 0 = 0x0

A.4.2 Displaying System Information

Table A-15 shows the commands that display information from the symbol table,
from the target system, and from the shell itself.

checkStack() Shows a stack usage summary for a task, or for all tasks if no
task is specified. The summary includes the total stack size
(SIZE), the current number of stack bytes (CUR), the maximum
number of stack bytes used (HIGH), and the number of bytes
never used at the top of the stack (MARGIN = SIZE - HIGH).
Use this routine to determine how much stack space to allocate,
and to detect stack overflow. This routine does not work for
tasks that use the VX_NO_STACK_FILL option.

tt() Displays a stack trace.

taskIdFigure() Reports a task ID, given its name.

Table A-14 C Interpreter Task Information Reporting Commands (cont’d)

Command Description

Table A-15 C Interpreter System Information Commands

Command Description

devs() Lists all devices known on the target system.

lkup() Lists symbols from symbol table.

lkAddr() Lists symbols whose values are near a specified value.

A Host Shell Commands and Options
A.4 Using the C Interpreter

69

A

The lkup() command takes a regular expression as its argument, and looks up all
symbols containing strings that match. In the simplest case, you can specify a
substring to see any symbols containing that string. For example, to display a list
containing routines and declared variables with names containing the string dsm,
do the following:

-> lkup "dsm"
_dsmData 0x00049d08 text (vxWorks)
_dsmNbytes 0x00049d76 text (vxWorks)
_dsmInst 0x00049d28 text (vxWorks)
mydsm 0x003c6510 bss (vxWorks)

Case is significant, but position is not (mydsm is shown, but myDsm would not
be). To explicitly write a search that would match either mydsm or myDsm, you
could write the following:

-> lkup "[dD]sm"

d() Displays target memory. You can specify a starting address,
size of memory units, and number of units to display.

l() Disassembles and displays a specified number of
instructions.

printErrno() Describes the most recent error status value.

version() Prints VxWorks version information.

cd() Changes the host working directory (no effect on target).

ls() Lists files in host working directory.

pwd() Displays the current host working directory.

help() Displays a summary of selected shell commands.

h() Displays up to 20 lines of command history.

shellHistory() Sets or displays shell history.

shellPromptSet() Changes the C-interpreter shell prompt.

printLogo() Displays the shell logo.

Table A-15 C Interpreter System Information Commands (cont’d)

Command Description

VxWorks
Command-Line Tools User’s Guide, 6.2

70

A.4.3 Modifying and Debugging the Target

Developers often need to change the state of the target, whether to run a new
version of some software module, to patch memory, or simply to single-step a
program. Table A-16 summarizes the commands of this type.

Table A-16 C Interpreter System Modification and Debugging Commands

Command Description

ld() Loads an object module into target memory and links it
dynamically into the run-time.

unld() Removes a dynamically linked object module from target
memory, and frees the storage it occupied.

m() Modifies memory in width (byte, short, or long) starting at
adr. The m() command displays successive words in
memory on the terminal; you can change each word by
typing a new hex value, leave the word unchanged and
continue by typing ENTER, or return to the shell by typing a
dot (.).

mRegs() Modifies register values for a particular task.

b() Sets or displays breakpoints, in a specified task or in all tasks.

bh() Sets a hardware breakpoint.

s() Steps a program to the next instruction.

so() Single-steps, but steps over a subroutine.

c() Continues from a breakpoint.

cret() Continues until the current subroutine returns.

bdall() Deletes all breakpoints.

bd() Deletes a breakpoint.

reboot() Returns target control to the target boot ROMs, then resets
the target server and reattaches the shell.

bootChange() Modifies the saved values of boot parameters.

A Host Shell Commands and Options
A.4 Using the C Interpreter

71

A

The m() command provides an interactive way of manipulating target memory.

The remaining commands in this group are for breakpoints and single-stepping.
You can set a breakpoint at any instruction. When that instruction is executed by
an eligible task (as specified with the b() command), the task that was executing
on the target suspends, and a message appears at the shell. At this point, you can
examine the task’s registers, do a task trace, and so on. The task can then be
deleted, continued, or single-stepped.

If a routine called from the shell encounters a breakpoint, it suspends just as any
other routine would, but in order to allow you to regain control of the shell, such
suspended routines are treated in the shell as though they had returned 0. The
suspended routine is nevertheless available for your inspection.

When you use s() to single-step a task, the task executes one machine instruction,
then suspends again. The shell display shows all the task registers and the next
instruction to be executed by the task.

A.4.4 Running Target Routines from the Host Shell

All target routines are available from the host shell. This includes both VxWorks
routines and your application routines. Thus the shell provides a powerful tool for
testing and debugging your applications using all the host resources while having
minimal impact on how the target performs and how the application behaves.

sysSuspend() If supported by the target agent configuration, enters system
mode.

sysResume() If supported by the target agent (and if system mode is in
effect), returns to task mode from system mode.

agentModeShow() Shows the agent mode (system or task).

sysStatusShow() Shows the system context status (suspended or running).

quit() or exit() Dismisses the shell.

Table A-16 C Interpreter System Modification and Debugging Commands (cont’d)

Command Description

VxWorks
Command-Line Tools User’s Guide, 6.2

72

Invocations of VxWorks Subroutines

-> taskSpawn ("tmyTask", 10, 0, 1000, myTask, fd1, 300)
value = …

-> fd = open ("file", 0, 0)
new symbol "fd" added to symbol table
fd = (…address of fd…): value = …

Invocations of Application Subroutines

-> testFunc (123)
value = …

-> myValue = myFunc (1, &val, testFunc (123))
myValue = (…address of myValue…): value = …

-> myDouble = (double ()) myFuncWhichReturnsADouble (x)
myDouble = (…address of myDouble…): value = …

Resolving Name Conflicts Between Host and Target

If you invoke a name that stands for a host shell command, the shell always
invokes that command, even if there is also a target routine with the same name.
Thus, for example, i() always runs on the host, regardless of whether you have the
VxWorks routine of the same name linked into your target.

However, you may occasionally need to call a target routine that has the same
name as a host shell command. The shell supports a convention allowing you to
make this choice: use the single-character prefix @ to identify the target version of
any routine. For example, to run a target routine named i(), invoke it with the
name @i().

A.5 Using the Tcl Interpreter

The Tcl interpreter allows you to access the WTX Tcl API, and to exploit Tcl’s
sophisticated scripting capabilities to write complex scripts to help you debug and
monitor your target.

A Host Shell Commands and Options
A.6 Using the GDB Interpreter

73

A

To switch to the Tcl interpreter from another mode, type a question mark (?) at the
prompt; the prompt changes to tcl> to remind you of the shell’s new mode. If you
are in another interpreter mode and want to use a Tcl command without changing
to Tcl mode, type a ? before your line of Tcl code.

A.5.1 Accessing the WTX Tcl API

The WTX Tcl API allows you to launch and kill a process, and to apply several
actions to it such as debugging actions (continue, stop, step), memory access (read,
write, set), perform gopher string evaluation, and redirect I/O at launch time.

A real time process (RTP) can be seen as a protected memory area. One or more
tasks can run in an RTP or in the kernel memory context as well. It is not possible
to launch a task or perform load actions in an RTP, therefore an RTP is seen by the
target server only as a memory context.

For a complete listing of WTX Tcl API commands, consult the wtxtcl reference
entries.

A.6 Using the GDB Interpreter

The GDB interpreter provides a command-line GDB interface to the host shell, and
permits the use of GDB commands to debug a target.

A.6.1 General GDB Commands

Table A-17 lists general commands available within the GDB interpreter.

! CAUTION: You may not embed Tcl evaluation inside a C expression; the ? prefix
works only as the first nonblank character on a line, and passes the entire line
following it to the Tcl interpreter.

Table A-17 General GDB Interpreter Commands

Command Description

help command Prints a description of the command.

VxWorks
Command-Line Tools User’s Guide, 6.2

74

A.6.2 Working with Breakpoints

Table A-18 shows commands available for setting and manipulating breakpoints.

cd directory Changes the current directory.

pwd Shows the current directory.

path path Appends path to the path variable.

show path Shows the path variable.

echo string Echoes the string.

list line|symbol| file:line Displays 10 lines of a source file, centered around a line
number or symbol.

shell command Runs a SHELL command (such as ls or dir).

source scriptfile Runs a script of GDB commands.

directory di Appends dir to the directory variable (for source file
searches.)

q[uit] Quits the GDB interpreter.

Table A-17 General GDB Interpreter Commands (cont’d)

Command Description

Table A-18 GDB Interpreter Breakpoint Commands

Command Description

b[reak] symbol|line| file:line [if expr] Sets a breakpoint

t[break] symbol|line| file:line [if expr] Sets a temporary breakpoint.

enable breakpointid Enables a breakpoint (+options once and
del).

disable breakpointid Disables a breakpoint.

delete breakpointid Deletes a breakpoint.

clear breakpointid Clears a breakpoint.

A Host Shell Commands and Options
A.6 Using the GDB Interpreter

75

A
A.6.3 Specifying Files to Debug

Table A-19 lists commands that specify the file(s) to be debugged.

cond breakpointid condition Changes a breakpoint condition
(re-initializes the breakpoint).

ignore breakpointid n Ignores a breakpoint n times (re-initializes
the breakpoint).

Table A-18 GDB Interpreter Breakpoint Commands (cont’d)

Command Description

Table A-19 GDB Interpreter File Context Commands

Command Description

file filename Defines filename as the program to be debugged.

exec-file filename Specifies that the program to be run is found in
filename.

load filename Loads a module.

unload filename Unloads a module.

attach processid Attaches to a process.

detach Detaches from the debugged process.

thread threadid Selects a thread as the current task to debug.

add-symbol-file file addr Reads additional symbol table information from the file
located at memory address addr.

VxWorks
Command-Line Tools User’s Guide, 6.2

76

A.6.4 Running and Stepping Through a File

Table A-20 contains commands to run and step through programs.

Table A-20 GDB Interpreter Running and Stepping Commands

Command Description

run Runs a process for debugging (use set arguments and
set environment if program needs them).

kill processid Kills a process.

interrupt Interrupts a running task or process.

continue Continues an interrupted task or process.

step [n] Steps through a program (if n is used, step n times).

stepi [n] Steps through one machine instruction (if n is used, step through
n instructions).

next [n] Continues to the next source line in the current stack frame (if n is
used, continue through n lines).

nexti [n] Execute one machine instruction, but if it is a function call,
proceed until the function returns (if n is used, execute n
instructions).

until Continue running until a source line past the current line, in the
current stack frame, is reached.

jump address Moves the instruction pointer to address.

finish Finishes execution of current block.

A Host Shell Commands and Options
A.6 Using the GDB Interpreter

77

A

A.6.5 Displaying Disassembler and Memory Information

Table A-21 lists commands for disassembling code and displaying contents of
memory.

A.6.6 Examining Stack Traces and Frames

Table A-22 shows commands for selecting and displaying stack frames.

A.6.7 Displaying Information and Expressions

Table A-23 lists commands that display functions, registers, expressions, and other
debugging information.

Table A-21 GDB Interpreter Disassembly and Memory Commands

Command Description

disassemble address Disassembles code at a specified address.

x [/format] address Displays memory starting at address. format is one of the
formats used by print: s for null-terminated string, or i for
machine instruction. Default is x for hexadecimal initially,
but the default changes each time you use either x or print.

Table A-22 GDB Interpreter Stack Trace and Frame Commands

Command Description

bt [n] Displays back trace of n frames.

frame [n] Selects frame number n.

up [n] Move n frames up the stack.

down [n] Moves n frames down the stack.

Table A-23 GDB Interpreter Information and Expression Commands

Command Description

info args Shows function arguments.

VxWorks
Command-Line Tools User’s Guide, 6.2

78

A.6.8 Displaying and Setting Variables

Table A-24 lists commands for displaying and setting variables.

info breakpoints Shows breakpoints.

info extensions Shows file extensions (c, c++, ...)

info functions Shows all functions.

info locals Shows local variables.

info registers Shows contents of registers.

info source Shows current source file.

info sources Shows all source files of current process.

info target Displays information about the target.

info threads Shows all threads.

info warranty Shows disclaimer information.

print /x expression Evaluates and prints an expression in hexadecimal format.

Table A-23 GDB Interpreter Information and Expression Commands (cont’d)

Command Description

Table A-24 GDB Interpreter Variable Display and Set Commands

Command Description

set args arguments Specifies the arguments to be used the next time a
debugged program is run.

set emacs Sets display into emacs mode.

set environment varname = value Sets environment variable varname to value. value
may be any string interpreted by the program.

set tgt-path-mapping Sets target to host pathname mappings.

set variable expression Sets variable value to expression.

A Host Shell Commands and Options
A.7 Using the Built-in Line Editor

79

A

A.7 Using the Built-in Line Editor

The host shell provides various line editing facilities available from the library
ledLib (Line Editing Library). ledLib serves as an interface between the user input
and the underlying command-line interpreters, and facilitates the user’s
interactive shell session by providing a history mechanism and the ability to scroll,
search, and edit previously typed commands. Any input is treated by ledLib until
the user presses the ENTER key, at which point the command typed is sent on to
the appropriate interpreter.

The line editing library also provides command completion, path completion,
command matching, and synopsis printing functionality.

A.7.1 vi-Style Editing

The ESC key switches the shell from normal input mode to edit mode. The history
and editing commands in Table A-25 and Table A-27 are available in edit mode.

Some line editing commands switch the line editor to insert mode until an ESC is
typed (as in vi) or until an ENTER gives the line to one of the shell interpreters.
ENTER always gives the line as input to the current shell interpreter, from either
input or edit mode.

In input mode, the shell history command h() displays up to 20 of the most recent
commands typed to the shell; older commands are lost as new ones are entered.
You can change the number of commands kept in history by running h() with a
numeric argument. To locate a previously typed line, press ESC followed by one
of the search commands listed in Table A-26; you can then edit and execute the line
with one of the commands from the table.

show args Shows arguments of debugged program.

show environment Shows environment of debugged program.

Table A-24 GDB Interpreter Variable Display and Set Commands (cont’d)

Command Description

VxWorks
Command-Line Tools User’s Guide, 6.2

80

Switching Modes and Controlling the Editor

Table A-25 lists commands that give you basic control over the editor.

Moving and Searching in the Editor

Table A-26 lists commands for moving and searching in input mode.

Table A-25 vi-Style Basic Control Commands

Command Description

h [size] Displays shell history if no argument is given; otherwise sets
history buffer to size.

ESC Switch to line editing mode from regular input mode.

ENTER Give line to current interpreter and leave edit mode.

CTRL+D Complete symbol or pathname (edit mode), display synopsis of
current symbol (symbol must be complete, followed by a space), or
end shell session (if the command line is empty).

[tab] Complete symbol or pathname (edit mode).

CTRL+H Delete a character (backspace).

CTRL+U Delete entire line (edit mode).

CTRL+L Redraw line (edit mode).

CTRL+S Suspend output.

CTRL+Q Resume output.

CTRL+W Display HTML reference entry for a routine.

Table A-26 vi-Style Movement and Search Commands

Command Description

nG Go to command number n. The default value for n is 1.

/s or ?s Search for string s backward or forward in history.

n Repeat last search.

A Host Shell Commands and Options
A.7 Using the Built-in Line Editor

81

A

Inserting and Changing Text

Table A-27 lists commands to insert and change text in the editor.

nk or n- Get nth previous shell command.

nj or n+ Get nth next shell command.

nh Go left n characters (also CTRL+H).

nl or SPACE Go right n characters.

nw or nW Go n words forward, or n large words. Words are separated by
spaces or punctuation; large words are separated by spaces only.

ne or nE Go to end of the nth next word, or nth next large word.

nb or nB Go back n words, or n large words.

$ Go to end of line.

0 or ^ Go to beginning of line, or to first nonblank character.

fc or Fc Find character c, searching forward or backward.

Table A-26 vi-Style Movement and Search Commands (cont’d)

Command Description

Table A-27 vi-Style Insertion and Change Commands

Command Description

a or A ...ESC Append, or append at end of line (ESC ends input).

i or I ...ESC Insert, or insert at beginning of line (ESC ends input).

ns ...ESC Change n characters (ESC ends input).

cw ...ESC Change word (ESC ends input).

cc or S ...ESC Change entire line (ESC ends input).

c$ or C ...ESC Change from cursor to end of line (ESC ends input).

c0 ...ESC Change from cursor to beginning of line (ESC ends input).

VxWorks
Command-Line Tools User’s Guide, 6.2

82

Deleting Text

Table A-28 shows commands for deleting text.

Put and Undo Commands

Table A-29 shows put and undo commands.

R ...ESC Type over characters (ESC ends input).

nrc Replace the following n characters with c.

~ Toggle between lower and upper case.

Table A-27 vi-Style Insertion and Change Commands (cont’d)

Command Description

Table A-28 vi-Style Commands for Deleting Text

Command Description

nx or nX Delete next n characters or previous n characters, starting at cursor.

dw Delete word.

dd Delete entire line (also CTRL+U).

d$ or D Delete from cursor to end of line.

d0 Delete from cursor to beginning of line.

Table A-29 vi-Style Put and Undo Commands

Command Description

p or P Put last deletion after cursor, or in front of cursor.

u Undo last command.

A Host Shell Commands and Options
A.7 Using the Built-in Line Editor

83

A

A.7.2 emacs-Style Editing

The shell history mechanism is similar to the UNIX Tcsh shell history facility, with
a built-in line editor similar to emacs that allows previously typed commands to
be edited. The command h() displays the 20 most recent commands typed into the
shell; old commands fall off the top as new ones are entered.

To edit a command, the arrow keys can be used on most of the terminals. Up arrow
and down arrow move up and down through the history list, like CTRL+P and
CTRL+N. Left arrow and right arrow move the cursor left and right one character,
like CTRL+B and CTRL+F.

Moving the Cursor

Table A-30 lists commands for moving the cursor in emacs mode.

Deleting and Recalling Text

Table A-31 shows commands for deleting and recalling text.

Table A-30 emacs-Style Cursor Motion Commands

Command Description

CTRL+B Move cursor back (left) one character.

CTRL+F Move cursor forward (right) one character.

ESC+b Move cursor back one word.

ESC+f Move cursor forward one word.

CTRL+A Move cursor to beginning of line.

CTRL+E Move cursor to end of line.

Table A-31 emacs-Style Deletion and Recall Commands

Command Description

DEL or CTRL+H Delete character to left of cursor.

CTRL+D Delete character under cursor.

VxWorks
Command-Line Tools User’s Guide, 6.2

84

Special Commands

Table A-32 shows some special emacs-mode commands.

A.7.3 Command Matching

Whenever the beginning of a command is followed by CTRL+D, ledLib lists any
commands that begin with the string entered.

ESC+d Delete word.

ESC+DEL Delete previous word.

CTRL+K Delete from cursor to end of line.

CTRL+U Delete entire line.

CTRL+P Get previous command in the history.

CTRL+N Get next command in the history.

!n Recall command n from the history.

!substr Recall first command from the history matching substr.

Table A-31 emacs-Style Deletion and Recall Commands (cont’d)

Command Description

Table A-32 Special emacs-Style Commands

Command Description

CTRL+U Delete line and leave edit mode.

CTRL+L Redraw line.

CTRL+D Complete symbol name.

ENTER Give line to interpreter and leave edit mode.

A Host Shell Commands and Options
A.8 Running the Host Shell in Batch Mode

85

A

To avoid ambiguity, the commands displayed depend upon the current
interpreter mode. For example, if a command string is followed by CTRL+D from
within the C interpreter, ledLib attempts to list any VxWorks symbols matching
the pattern. If the same is performed from within the command interpreter, ledLib
attempts to list any commands available from within command mode that begin
with that string.

Directory and File Matching

You can also use CTRL+D to list all the files and directories that match a certain
string. This functionality is available from all interpreter modes.

A.7.4 Command and Path Completion

ledLib attempts to complete any string typed by the user that is followed by the
TAB character (for commands, the command completion is specific to the currently
active interpreter).

Path completion attempts to complete a directory name when the TAB key is
pressed. This functionality is available from all interpreter modes.

A.8 Running the Host Shell in Batch Mode

The host shell can also be run in batch mode, with commands passed to the host
shell using the -c option followed by the command(s) to execute.

The commands must be delimited with double quote characters. The default
interpreter mode used to execute the commands is the C interpreter; to execute
commands in a different mode, specify the mode with the -m[ode] option. It is not
possible to execute a mixed mode command with the -c option.

For example:

1. To launch the host shell in batch mode, executing the Command interpreter
commands task and rtp task, type the following:

% windsh -m cmd -c "task ; rtp task" tgtsvr@host

VxWorks
Command-Line Tools User’s Guide, 6.2

86

The -m option indicates that the commands should be executed by the
Command interpreter.

2. To launch the host shell in batch mode, executing the tcl mode commands puts
and expr, type the following:

% windsh -m tcl -c "puts helloworld; expr 33 + 22" tgtsvr@host

87

Index

Symbols

symbols - see assignment operators, asterisk, at,
backslashes, quotation marks, slashes,
spaces

A
add (vxprj) 15
ADDED_C++FLAGS 32
ADDED_CFLAGS 32
ADDED_CLEAN_LIBS 32
ADDED_DYN_EXE_FLAGS 32
ADDED_LIB_DEPS 33
ADDED_LIBS 32
ADDED_SHARED_LIBS 33
aliases, host shell 61
archives

makefile 31
at symbol (@) 44
autoscale 22

B
backslashes 2

host-shell commands 43
Tcl 22

batch mode, host shell 85
board support package

defined 12
documentation 12

boot-loader 38
breakpoints, setting in host shell

C interpreter 44
command mode 43
GDB mode 45

list of commands 74
BSPs - see board support package
build rules

changing 28
defined 26
examining 27

build specifications
defined 26
examining 27
setting 27

bundles
adding to projects 16
defined 16
listing and examining 19
removing from projects 16

VxWorks
Command-Line Tools User’s Guide, 6.2

88

C
C interpreter (host shell) 44
.cdf files 11

components 15
CDL 11
check (vxprj component) 19
cmpProjClose 22
cmpProjCopy 22
cmpProjCreate 22
cmpProjOpen 22
cmpScriptLib

and vxprj 22
building projects 29
documentation 21
project management 12
using 21

cmpTest 20
code-browsing 1
compiler

and make utility 26
documentation 2
GNU 1
option flags (C) 32
option flags (C++) 32
selecting 26

TOOL make variable 35
vxprj 13

Wind River (Diab) 1
component (vxprj) 15
component dependencies 20
Component Description Language (CDL) 11
components

adding to projects 15
CDL amd .cdf files 11
checking syntax 19
defined 11
listing (projects) 18
removing from projects 16

configuration parameters
listing and examining 20
setting 17

CPU (make variable) 33

D
debugging

host shell 41
multicore 1

default... build specifications 26
delete (vxprj) 15
dependencies (vxprj) 20
development shell - see wrenv
diab

see also Wind River Compiler
specifying compiler with vxprj 14

diff
vxprj component 19
vxprj parameter 21

directory structure (projects) 31
dmake 30
DOC_FILES 33
documentation

BSPs 12
compiler 2
generating 33
host shell 41
make utility 30
projects 11
vxprj 12
VxWorks 1
VxWorks Simulator 14
Workbench 1

downloadable kernel modules
building 29
IDE project management 12

dynamic libraries, building 34

E
-e 7
editor

host shell 79
emacs-style editing, host shell 83
environment variables

displaying with wrenv 8
host shell 50
setting with wrenv 5

 Index

89

Index

error detection 16
eval subkeys (properties files) 10
EXCLUDE_SUBDIRS 33
EXE (make variable) 33
EXE_FORMAT 33
EXTRA_INCLUDE 33

F
-f 7
files

adding and removing in projects 18
examining source 21

file-system projects 12
building 29

G
GCC (GNU Compiler) 1

documentation 2
GDB (GNU Debugger) mode, host shell 45
gnu

specifying compiler with vxprj 13

H
host shell

aliases 61
batch mode 85
breakpoints

C interpreter 44
command mode 43
GDB mode 45
list of GDB-mode commands 74

C interpreter 44
command mode 42
debugging 41
detailed commands 47
documentation 41
editor 79
environment variables 50

GDB mode 45
help 41
memory 56
modes, switching 42
starting 42
stopping 42
symbols 57
tasks 59

C interpreter 66
Tcl interpreter 45

I
-i 7
IDE

exclusive features 1
project files 11
project management 12
wrenv 5

install.properties
syntax 9
wrenv 5

IP address 38

K
kernel configuration

vxprj 11
kernel configuration projects

building 25
cmpScriptLib 29
vxprj 26

creating
cmpProjCreate 22
vxprj 12

defined 12
kernel shell 16

VxWorks
Command-Line Tools User’s Guide, 6.2

90

L
ledLib 79
LIB_BASE_NAME 33
LIB_DIR 34
LIB_FORMAT 34
LIBNAME 33
libraries

linking to RTP applications 32
makefiles 31
shared (dynamic), building 34
static, building 34
user-mode (RTP), building 30

linux (simulator BSP) 14
LOCAL_CLEAN 34
LOCAL_RCLEAN 34

M
make utility 1

calling directly 30
dmake 30
documentation 30
sh command 30
wrenv, configuring environment 30
Z shell 30

make variables 32
makefiles

archives (libraries) 31
changing name 17
editing generated files 12
editing, and project files 30
RTPs (applications) 31
RTPs (libraries) 31
vxprj-generated 14

make-rule files 31
memory, host-shell commands 56
multicore debugging 1

O
-o 7

OBJ_DIR 34
object files

specifying build output 34
OBJS 34

P
packages

displaying with wrenv 8
install.properties 9
Tcl 21

parameter (vxprj) 17
POSIX 16
print_compatible (wrenv -o) 8
print_env (wrenv -o) 8
print_package_name (wrenv -o) 8
print_packages (wrenv -o) 8
print_vars (wrenv -o) 7
-profile 15
PROFILE_DEVELOPMENT 14
profiles

creating projects 14
defined 14
listing and examining 19

project files
.wpj 11
.wrproject 11
editing generated files 12
IDE 11
makefiles

editing 30
projects

building 25
cmpScriptLib 29
vxprj 26

comparing
components 19
parameters 21

copying 14
defined 11
deleting 15
directory structure 31
documentation 11
managing 11

 Index

91

Index

with Tcl scripts 21
see also kernel configuration projects, VxWorks

image project, downloadable kernel
modules, shared libraries, RTPs, file-
system projects

types of project
building 25
managing 12

vxprj 12

Q
quotation marks

on command line 17

R
registry 37
remove (vxprj) 16
__RTP__

building RTP libraries 32
RTPs (real time processes)

building 30
bundle 16
creating projects 23
makefiles for applications 31
makefiles for libraries 31
project management 12
running in host shell 43
VxWorks libraries, building 32
VxWorks simulator 39

rules.library 32
and LOCAL_CLEAN 34
and LOCAL_RCLEAN 34

rules.rtp 32
and LOCAL_CLEAN 34
and LOCAL_RCLEAN 34
example of use 31

run (wrenv -o) 7

S
serial terminal 38
sh command

make utility 30
sh.exe

Z shell 6
called by make 30

shared libraries 12
building 34
linking to RTP applications 33

shell
development 5
host

debugging 41
detailed commands 47
see also host shell

kernel (target) 47
Z (zsh) 6

called by make 30
simpc 14
simulator (VxWorks)

BSPs 13, 14
documentation 14
kernel configuration projects 14
running 38

SL_INSTALL_DIR 34
SL_VERSION 34
slashes

Tcl 22
UNIX and Windows 2

.so files 33
solaris (simulator BSP) 14
spaces

host shell 43
on command line 17

static libraries, building 34
SUBDIRS 34
symbols - see assignment operators, asterisk, at,

backslashes, quotation marks, slashes,
spaces

symbols, in host shell 57

VxWorks
Command-Line Tools User’s Guide, 6.2

92

T
target

connecting 37
see also CPU

target agent 48
displaying information 56

target server 48
starting 38

tasks, in host shell 59
C interpreter 66

Tcl interpreter (host shell) 45
Tcl libraries

documentation 21
project management 12, 21
see also cmpScriptLib

tgtsrv 38
TOOL (make variable) 35

U
UNIX

conventions 2

V
variables

environment 5
displaying with wrenv 7
host shell 50

vi-style editing, host shell 79
.vxe files 26
VXE_DIR 35
vxprj

and cmpScriptLib 22
building projects 26
documentation 12
managing projects 12

VxWorks
documentation 1

VxWorks image project
defined 12

see also kernel configuration projects
VxWorks Simulator

see simulator
vxworks60 package 10

W
Wind River Compiler 1
Windows

conventions 2
Workbench

documentation 1
project management 12

.wpj files 11
components 15

wrenv
IDE startup 5
options 7
overview 5

.wrproject files 11
_WRS_KERNEL

building RTP libraries 32
wtxConsole 38
wtxtcl, WTX 45

Z
Z shell 6

called by make 30

	VxWorks Command-Line Tools User's Guide
	Contents
	1 Overview
	1.1 Introduction
	1.2 What’s in This Book

	2 Creating a Development Shell with wrenv
	2.1 Introduction
	2.2 Invoking wrenv
	2.3 Options to wrenv
	2.4 install.properties and package.properties

	3 Working with Projects and Components
	3.1 Introduction
	3.2 Using vxprj
	3.2.1 Creating Kernel Configuration Projects
	Copying Projects
	Using Profiles

	3.2.2 Deleting Projects
	3.2.3 Modifying Projects
	Adding Components
	Removing Components
	Setting Configuration Parameter Values
	Changing the Project Makefile Name
	Adding and Removing Individual Files

	3.2.4 Generating Project and Component Diagnostics
	Obtaining a List of Components
	Checking a Component
	Checking Component Dependencies
	Listing Configuration Parameters and Values
	Examining the Source Files in a Project

	3.3 Using cmpScriptLib and Other Libraries
	3.4 RTP and Library Projects

	4 Building Kernel and Application Projects
	4.1 Introduction
	4.2 Building Kernel Configuration Projects with vxprj
	4.2.1 Examining Build Specifications and Rules
	4.2.2 Changing Build Settings
	Adding and Changing Build Rules

	4.3 Building Projects with cmpScriptLib
	4.4 Other VxWorks Project Types
	4.5 Calling make Directly
	4.6 RTP Applications and Libraries
	RTP Applications
	RTP Libraries
	Makefile and Directory Structure
	4.6.1 Rebuilding VxWorks RTP (User-Mode) Libraries
	4.6.2 Make Variables

	5 Connecting to a Target
	5.1 Introduction
	5.2 Connecting to a Target Board
	5.3 Using the VxWorks Simulator

	6 Debugging Applications with the Host Shell
	6.1 Introduction
	6.2 Starting and Stopping the Host Shell
	6.3 Switching Modes
	6.4 Command Mode
	6.5 C Interpreter
	6.6 Tcl Mode
	6.7 GDB Mode

	A Host Shell Commands and Options
	A.1 Introduction
	A.2 Host Shell Basics
	A.2.1 Starting the Host Shell
	Host Shell Startup Options

	A.2.2 Switching Interpreters
	A.2.3 Setting Shell Environment Variables
	A.2.4 Stopping the Host Shell

	A.3 Using the Command Interpreter
	A.3.1 General Host Shell Commands
	A.3.2 Displaying Target Agent Information
	A.3.3 Working with Memory
	A.3.4 Displaying Object Information
	A.3.5 Working with Symbols
	Accessing a Symbol’s Contents and Address

	A.3.6 Displaying, Controlling, and Stepping Through Tasks
	A.3.7 Setting Shell Context Information
	A.3.8 Displaying System Status
	A.3.9 Using and Modifying Aliases
	A.3.10 Launching RTPs
	Redirecting Output to the Host Shell
	Monitoring and Debugging RTPs
	Setting Breakpoints

	A.4 Using the C Interpreter
	A.4.1 Managing Tasks
	A.4.2 Displaying System Information
	A.4.3 Modifying and Debugging the Target
	A.4.4 Running Target Routines from the Host Shell
	Invocations of VxWorks Subroutines
	Invocations of Application Subroutines
	Resolving Name Conflicts Between Host and Target

	A.5 Using the Tcl Interpreter
	A.5.1 Accessing the WTX Tcl API

	A.6 Using the GDB Interpreter
	A.6.1 General GDB Commands
	A.6.2 Working with Breakpoints
	A.6.3 Specifying Files to Debug
	A.6.4 Running and Stepping Through a File
	A.6.5 Displaying Disassembler and Memory Information
	A.6.6 Examining Stack Traces and Frames
	A.6.7 Displaying Information and Expressions
	A.6.8 Displaying and Setting Variables

	A.7 Using the Built-in Line Editor
	A.7.1 vi-Style Editing
	Switching Modes and Controlling the Editor
	Moving and Searching in the Editor
	Inserting and Changing Text
	Deleting Text
	Put and Undo Commands

	A.7.2 emacs-Style Editing
	Moving the Cursor
	Deleting and Recalling Text
	Special Commands

	A.7.3 Command Matching
	Directory and File Matching

	A.7.4 Command and Path Completion

	A.8 Running the Host Shell in Batch Mode

	Index

